多稳定丛及其自同构的表示

IF 0.5 Q3 MATHEMATICS
N. Buchdahl, G. Schumacher
{"title":"多稳定丛及其自同构的表示","authors":"N. Buchdahl, G. Schumacher","doi":"10.1515/coma-2021-0131","DOIUrl":null,"url":null,"abstract":"Abstract Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kähler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of in˝nitesimal deformations.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"78 - 113"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polystable bundles and representations of their automorphisms\",\"authors\":\"N. Buchdahl, G. Schumacher\",\"doi\":\"10.1515/coma-2021-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kähler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of in˝nitesimal deformations.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"9 1\",\"pages\":\"78 - 113\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2021-0131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要利用Hodge理论的准线性版本,证明了紧致Kähler流形上给定多稳态丛邻域中的全纯向量丛是(poly)稳定的,当且仅当它们对应的类在几何不变量理论意义上关于丛的自同构群在其in-nitesimal变形空间上的线性作用是(poly)稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polystable bundles and representations of their automorphisms
Abstract Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kähler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of in˝nitesimal deformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信