{"title":"多稳定丛及其自同构的表示","authors":"N. Buchdahl, G. Schumacher","doi":"10.1515/coma-2021-0131","DOIUrl":null,"url":null,"abstract":"Abstract Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kähler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of in˝nitesimal deformations.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"78 - 113"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polystable bundles and representations of their automorphisms\",\"authors\":\"N. Buchdahl, G. Schumacher\",\"doi\":\"10.1515/coma-2021-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kähler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of in˝nitesimal deformations.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"9 1\",\"pages\":\"78 - 113\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2021-0131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Polystable bundles and representations of their automorphisms
Abstract Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kähler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of in˝nitesimal deformations.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.