闭次摆线和表摆线的分类

Q4 Mathematics
Zarema S. Seidametova, V. Temnenko
{"title":"闭次摆线和表摆线的分类","authors":"Zarema S. Seidametova, V. Temnenko","doi":"10.1080/0025570X.2023.2167397","DOIUrl":null,"url":null,"abstract":"Summary The paper describes a classification of closed epicycloids and hypocycloids into three classes: “odd/odd,” “even/odd,” “odd/even.” A subset of “perfect” epicycloids and hypocycloids that do not have self-intersection points has been identified. A new composite geometric object is constructed: the Euler Ring of Rings, consisting of a perfect epicycloid and a perfect hypocycloid with the same indices.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Classification of Closed Hypocycloids and Epicycloids\",\"authors\":\"Zarema S. Seidametova, V. Temnenko\",\"doi\":\"10.1080/0025570X.2023.2167397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The paper describes a classification of closed epicycloids and hypocycloids into three classes: “odd/odd,” “even/odd,” “odd/even.” A subset of “perfect” epicycloids and hypocycloids that do not have self-intersection points has been identified. A new composite geometric object is constructed: the Euler Ring of Rings, consisting of a perfect epicycloid and a perfect hypocycloid with the same indices.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2023.2167397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2167397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文将闭合外摆线和内摆线分为三类:“奇数/奇数”、“偶数/奇数”和“奇数/偶数”。已经确定了一个没有自交点的“完美”外摆线和外摆线的子集。构造了一个新的复合几何对象:欧拉环,它由一个具有相同指数的完美外摆线和一个完美内摆线组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Classification of Closed Hypocycloids and Epicycloids
Summary The paper describes a classification of closed epicycloids and hypocycloids into three classes: “odd/odd,” “even/odd,” “odd/even.” A subset of “perfect” epicycloids and hypocycloids that do not have self-intersection points has been identified. A new composite geometric object is constructed: the Euler Ring of Rings, consisting of a perfect epicycloid and a perfect hypocycloid with the same indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信