{"title":"具有边界的紧黎曼曲面上均值为零的Trudinger-Moser不等式","authors":"Mengjie Zhang","doi":"10.7153/mia-2021-24-54","DOIUrl":null,"url":null,"abstract":"In this paper, on a compact Riemann surface $(\\Sigma, g)$ with smooth boundary $\\partial\\Sigma$, we concern a Trudinger-Moser inequality with mean value zero. To be exact, let $\\lambda_1(\\Sigma)$ denotes the first eigenvalue of the Laplace-Beltrami operator with respect to the zero mean value condition and $\\mathcal{ S }= \\left\\{ u \\in W^{1,2} (\\Sigma, g) : \\|\\nabla_g u\\|_2^2 \\leq 1\\right.$ and $\\left.\\int_\\Sigma u \\,dv_g = 0 \\right \\},$ where $W^{1,2}(\\Sigma, g)$ is the usual Sobolev space, $\\|\\cdot\\|_2$ denotes the standard $L^2$-norm and $\\nabla_{g}$ represent the gradient. By the method of blow-up analysis, we obtain \\begin{eqnarray*} \\sup_{u \\in \\mathcal{S}} \\int_{\\Sigma} e^{ 2\\pi u^{2} \\left(1+\\alpha\\|u\\|_2^{2}\\right) }d v_{g} 0$. Based on the similar work in the Euclidean space, which was accomplished by Lu-Yang \\cite{Lu-Yang}, we strengthen the result of Yang \\cite{Yang2006IJM}.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Trudinger-Moser inequality with mean value zero on a compact Riemann surface with boundary\",\"authors\":\"Mengjie Zhang\",\"doi\":\"10.7153/mia-2021-24-54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, on a compact Riemann surface $(\\\\Sigma, g)$ with smooth boundary $\\\\partial\\\\Sigma$, we concern a Trudinger-Moser inequality with mean value zero. To be exact, let $\\\\lambda_1(\\\\Sigma)$ denotes the first eigenvalue of the Laplace-Beltrami operator with respect to the zero mean value condition and $\\\\mathcal{ S }= \\\\left\\\\{ u \\\\in W^{1,2} (\\\\Sigma, g) : \\\\|\\\\nabla_g u\\\\|_2^2 \\\\leq 1\\\\right.$ and $\\\\left.\\\\int_\\\\Sigma u \\\\,dv_g = 0 \\\\right \\\\},$ where $W^{1,2}(\\\\Sigma, g)$ is the usual Sobolev space, $\\\\|\\\\cdot\\\\|_2$ denotes the standard $L^2$-norm and $\\\\nabla_{g}$ represent the gradient. By the method of blow-up analysis, we obtain \\\\begin{eqnarray*} \\\\sup_{u \\\\in \\\\mathcal{S}} \\\\int_{\\\\Sigma} e^{ 2\\\\pi u^{2} \\\\left(1+\\\\alpha\\\\|u\\\\|_2^{2}\\\\right) }d v_{g} 0$. Based on the similar work in the Euclidean space, which was accomplished by Lu-Yang \\\\cite{Lu-Yang}, we strengthen the result of Yang \\\\cite{Yang2006IJM}.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2021-24-54\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-54","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
本文在具有光滑边界的紧致Riemann曲面$(\Sigma,g)$上,讨论了一个均值为零的Trudinger-Moser不等式。确切地说,设$\lambda_1(\Sigma)$表示拉普拉斯-贝尔特拉米算子关于零均值条件的第一个本征值,并且$\mathcal{S}=\left\{u\ in W^{1,2}(\ Sigma,g):\|\nabla_g u\|_2^2 \leq 1\right。$剩下$\。\int_\Sigma u\,dv_g=0\right\},$其中$W^{1,2}(\Sigma,g)$是通常的Sobolev空间,$\|\cdot\|_2$表示标准的$L^2$范数,$\nabla_{g}$表示梯度。用爆破分析的方法,我们得到了begin{eqnarray*}\sup_{u}in\mathcal{S}}\int_{\ Sigma}e ^{2}\pi u ^{2中}\left(1+\alpha\|u ^ 2中}\right)}d v_{g}0$。基于鲁在欧几里得空间中完成的类似工作,我们加强了杨的结果。
A Trudinger-Moser inequality with mean value zero on a compact Riemann surface with boundary
In this paper, on a compact Riemann surface $(\Sigma, g)$ with smooth boundary $\partial\Sigma$, we concern a Trudinger-Moser inequality with mean value zero. To be exact, let $\lambda_1(\Sigma)$ denotes the first eigenvalue of the Laplace-Beltrami operator with respect to the zero mean value condition and $\mathcal{ S }= \left\{ u \in W^{1,2} (\Sigma, g) : \|\nabla_g u\|_2^2 \leq 1\right.$ and $\left.\int_\Sigma u \,dv_g = 0 \right \},$ where $W^{1,2}(\Sigma, g)$ is the usual Sobolev space, $\|\cdot\|_2$ denotes the standard $L^2$-norm and $\nabla_{g}$ represent the gradient. By the method of blow-up analysis, we obtain \begin{eqnarray*} \sup_{u \in \mathcal{S}} \int_{\Sigma} e^{ 2\pi u^{2} \left(1+\alpha\|u\|_2^{2}\right) }d v_{g} 0$. Based on the similar work in the Euclidean space, which was accomplished by Lu-Yang \cite{Lu-Yang}, we strengthen the result of Yang \cite{Yang2006IJM}.
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.