基于mpso的交直流升压变换器功率因数校正PID控制设计

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
J. Guarnizo, C. Torres-Pinzón, J. Bayona, D. Paez, J. P. Romero, B. Noriegaa, L. Paredes-Madrid
{"title":"基于mpso的交直流升压变换器功率因数校正PID控制设计","authors":"J. Guarnizo, C. Torres-Pinzón, J. Bayona, D. Paez, J. P. Romero, B. Noriegaa, L. Paredes-Madrid","doi":"10.1080/00051144.2023.2225918","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation for the first time of a Multi-Particle Swarm Optimization (MPSO) algorithm in the tuning of a PID controller for Power Factor Correction (PFC), applied to a 100W AC-DC boost converter. MPSO algorithm navigates in a search space where each dimension of the space corresponds to the controller constants (Proportional, Integral, Derivative and the Derivative Filter), prioritizing communication over exploration in the algorithm. The controller parameters are randomly initialized in a reduced sector of the space [ , , , ], to optimize the search for a PID solution. In the first step, the algorithm is validated using a simulation model in Simulink and Matlab. Subsequently, a final implementation using a real converter is implemented with the PID tuned by MPSO, improving the PFC obtained in previous work. Although previous works have used evolutionary algorithms applied to heuristic optimization to tunning PID controllers, the MPSO algorithm is not usually used for this purpose, particularly to tunning a PID controller in a power electronics system. One advantage of MPSO over the PSO classical algorithm is the search at different points if the vectorial field looks for an optimal solution. PSO presents problems such as getting stuck in a locally optimal solution. The PID controller is trained offline, with the advantage of allowing the risk of damage in the Boost converter for transitory response, increasing the performance of the Power Factor Correction in the converter. This research opens the possibility to use the extended version of the PSO bioinspired algorithm to tune offline controllers to improve the power converter's performance, minimizing the risk presented in the real-time tuning process.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MPSO-based PID control design for power factor correction in an AC-DC boost converter\",\"authors\":\"J. Guarnizo, C. Torres-Pinzón, J. Bayona, D. Paez, J. P. Romero, B. Noriegaa, L. Paredes-Madrid\",\"doi\":\"10.1080/00051144.2023.2225918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the implementation for the first time of a Multi-Particle Swarm Optimization (MPSO) algorithm in the tuning of a PID controller for Power Factor Correction (PFC), applied to a 100W AC-DC boost converter. MPSO algorithm navigates in a search space where each dimension of the space corresponds to the controller constants (Proportional, Integral, Derivative and the Derivative Filter), prioritizing communication over exploration in the algorithm. The controller parameters are randomly initialized in a reduced sector of the space [ , , , ], to optimize the search for a PID solution. In the first step, the algorithm is validated using a simulation model in Simulink and Matlab. Subsequently, a final implementation using a real converter is implemented with the PID tuned by MPSO, improving the PFC obtained in previous work. Although previous works have used evolutionary algorithms applied to heuristic optimization to tunning PID controllers, the MPSO algorithm is not usually used for this purpose, particularly to tunning a PID controller in a power electronics system. One advantage of MPSO over the PSO classical algorithm is the search at different points if the vectorial field looks for an optimal solution. PSO presents problems such as getting stuck in a locally optimal solution. The PID controller is trained offline, with the advantage of allowing the risk of damage in the Boost converter for transitory response, increasing the performance of the Power Factor Correction in the converter. This research opens the possibility to use the extended version of the PSO bioinspired algorithm to tune offline controllers to improve the power converter's performance, minimizing the risk presented in the real-time tuning process.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2225918\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2225918","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
MPSO-based PID control design for power factor correction in an AC-DC boost converter
This paper presents the implementation for the first time of a Multi-Particle Swarm Optimization (MPSO) algorithm in the tuning of a PID controller for Power Factor Correction (PFC), applied to a 100W AC-DC boost converter. MPSO algorithm navigates in a search space where each dimension of the space corresponds to the controller constants (Proportional, Integral, Derivative and the Derivative Filter), prioritizing communication over exploration in the algorithm. The controller parameters are randomly initialized in a reduced sector of the space [ , , , ], to optimize the search for a PID solution. In the first step, the algorithm is validated using a simulation model in Simulink and Matlab. Subsequently, a final implementation using a real converter is implemented with the PID tuned by MPSO, improving the PFC obtained in previous work. Although previous works have used evolutionary algorithms applied to heuristic optimization to tunning PID controllers, the MPSO algorithm is not usually used for this purpose, particularly to tunning a PID controller in a power electronics system. One advantage of MPSO over the PSO classical algorithm is the search at different points if the vectorial field looks for an optimal solution. PSO presents problems such as getting stuck in a locally optimal solution. The PID controller is trained offline, with the advantage of allowing the risk of damage in the Boost converter for transitory response, increasing the performance of the Power Factor Correction in the converter. This research opens the possibility to use the extended version of the PSO bioinspired algorithm to tune offline controllers to improve the power converter's performance, minimizing the risk presented in the real-time tuning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信