关于抛物矩阵生成的群族

Q4 Mathematics
C. Pommerenke, M. Toro
{"title":"关于抛物矩阵生成的群族","authors":"C. Pommerenke, M. Toro","doi":"10.15446/recolma.v53n2.85541","DOIUrl":null,"url":null,"abstract":"We study various aspects of the family of groups generated by the parabolic matrices A(t1 ζ), ... , A(tm ζ) where A(z) = ( 1 z0 1 ) and by the elliptic matrix ( 0 -1  1 0 ). The elements of the matrices W in such groups can be computed by a recursion formula. These groups are special cases of the generalized parametrized modular groups introduced in [16].We study the sets {z : tr W(z) ∈ [-2; +2]} [13] and their critical points and geometry, furthermore some finite index subgroups and the discretness of subgroups.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a family of groups generated by parabolic matrices\",\"authors\":\"C. Pommerenke, M. Toro\",\"doi\":\"10.15446/recolma.v53n2.85541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study various aspects of the family of groups generated by the parabolic matrices A(t1 ζ), ... , A(tm ζ) where A(z) = ( 1 z0 1 ) and by the elliptic matrix ( 0 -1  1 0 ). The elements of the matrices W in such groups can be computed by a recursion formula. These groups are special cases of the generalized parametrized modular groups introduced in [16].We study the sets {z : tr W(z) ∈ [-2; +2]} [13] and their critical points and geometry, furthermore some finite index subgroups and the discretness of subgroups.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53n2.85541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53n2.85541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由抛物矩阵A(t1ζ),A(tmζ),其中A(z)=(1 z0 1)和椭圆矩阵(0-1 1 0)。这些组中的矩阵W的元素可以通过递归公式来计算。这些群是[16]中引入的广义参数化模群的特例。我们研究了集{z:tr W(z)∈[-2;+2]}[13]及其临界点和几何,以及一些有限指数子群和子群的离散性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a family of groups generated by parabolic matrices
We study various aspects of the family of groups generated by the parabolic matrices A(t1 ζ), ... , A(tm ζ) where A(z) = ( 1 z0 1 ) and by the elliptic matrix ( 0 -1  1 0 ). The elements of the matrices W in such groups can be computed by a recursion formula. These groups are special cases of the generalized parametrized modular groups introduced in [16].We study the sets {z : tr W(z) ∈ [-2; +2]} [13] and their critical points and geometry, furthermore some finite index subgroups and the discretness of subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信