R. Angliss, M. Ferguson, Cara Appel, Jeremy Brown, Claire Bortot, W. Bean
{"title":"比较北极鲸类动物监测的载人和无人航空调查:方法和操作结果","authors":"R. Angliss, M. Ferguson, Cara Appel, Jeremy Brown, Claire Bortot, W. Bean","doi":"10.1139/JUVS-2018-0001","DOIUrl":null,"url":null,"abstract":"Manned aerial surveys are routinely used to assess cetacean distribution and density, often over large geographic areas. Unmanned aircraft systems (UAS) have been identified as a technology that could augment or replace manned aerial surveys for cetaceans. To understand what research questions involving cetacean distribution and density can be addressed using manned and UAS technology in the Arctic, we conducted paired aerial surveys for cetaceans near Utqiaġvik (Barrow), Alaska. We present the methods and operational results from the project, and challenges encountered during the field work. Fall arctic weather varied dramatically over small spatiotemporal scales and harsh environmental conditions increased the maintenance required for repeated UAS operations. Various technologies, such as temperature and humidity sensors, a software system that provided near-term forecasts of highly variable weather, and a surface-based air traffic radar feed, directly contributed to the ability to conduct routine, successful, beyond line-of-sight UAS flights under these situations. We provide recommendations for future projects to help streamline project planning and enhance researchers’ ability to use UAS to collect data needed for ecological research.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/JUVS-2018-0001","citationCount":"19","resultStr":"{\"title\":\"Comparing manned to unmanned aerial surveys for cetacean monitoring in the Arctic: methods and operational results\",\"authors\":\"R. Angliss, M. Ferguson, Cara Appel, Jeremy Brown, Claire Bortot, W. Bean\",\"doi\":\"10.1139/JUVS-2018-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manned aerial surveys are routinely used to assess cetacean distribution and density, often over large geographic areas. Unmanned aircraft systems (UAS) have been identified as a technology that could augment or replace manned aerial surveys for cetaceans. To understand what research questions involving cetacean distribution and density can be addressed using manned and UAS technology in the Arctic, we conducted paired aerial surveys for cetaceans near Utqiaġvik (Barrow), Alaska. We present the methods and operational results from the project, and challenges encountered during the field work. Fall arctic weather varied dramatically over small spatiotemporal scales and harsh environmental conditions increased the maintenance required for repeated UAS operations. Various technologies, such as temperature and humidity sensors, a software system that provided near-term forecasts of highly variable weather, and a surface-based air traffic radar feed, directly contributed to the ability to conduct routine, successful, beyond line-of-sight UAS flights under these situations. We provide recommendations for future projects to help streamline project planning and enhance researchers’ ability to use UAS to collect data needed for ecological research.\",\"PeriodicalId\":45619,\"journal\":{\"name\":\"Journal of Unmanned Vehicle Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/JUVS-2018-0001\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unmanned Vehicle Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/JUVS-2018-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/JUVS-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Comparing manned to unmanned aerial surveys for cetacean monitoring in the Arctic: methods and operational results
Manned aerial surveys are routinely used to assess cetacean distribution and density, often over large geographic areas. Unmanned aircraft systems (UAS) have been identified as a technology that could augment or replace manned aerial surveys for cetaceans. To understand what research questions involving cetacean distribution and density can be addressed using manned and UAS technology in the Arctic, we conducted paired aerial surveys for cetaceans near Utqiaġvik (Barrow), Alaska. We present the methods and operational results from the project, and challenges encountered during the field work. Fall arctic weather varied dramatically over small spatiotemporal scales and harsh environmental conditions increased the maintenance required for repeated UAS operations. Various technologies, such as temperature and humidity sensors, a software system that provided near-term forecasts of highly variable weather, and a surface-based air traffic radar feed, directly contributed to the ability to conduct routine, successful, beyond line-of-sight UAS flights under these situations. We provide recommendations for future projects to help streamline project planning and enhance researchers’ ability to use UAS to collect data needed for ecological research.