两圆柱静电问题的四个解,以及由它们的等价性所产生的恒等式

IF 0.8 4区 工程技术 Q3 MATHEMATICS, APPLIED
J. Lekner
{"title":"两圆柱静电问题的四个解,以及由它们的等价性所产生的恒等式","authors":"J. Lekner","doi":"10.1093/qjmam/hbaa010","DOIUrl":null,"url":null,"abstract":"\n Four distinct solutions exist for the potential distribution around two equal circular parallel conducting cylinders, charged to the same potential. Their equivalence is demonstrated, and the resulting analytical identities are discussed. The identities relate the Jacobi elliptic function $sn$, the Jacobi theta functions $\\theta _1 ,~\\theta _2 $ and infinite series over trigonometric and hyperbolic functions.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"73 1","pages":"251-260"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbaa010","citationCount":"1","resultStr":"{\"title\":\"Four solutions of a two-cylinder electrostatic problem, and identities resulting from their equivalence\",\"authors\":\"J. Lekner\",\"doi\":\"10.1093/qjmam/hbaa010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Four distinct solutions exist for the potential distribution around two equal circular parallel conducting cylinders, charged to the same potential. Their equivalence is demonstrated, and the resulting analytical identities are discussed. The identities relate the Jacobi elliptic function $sn$, the Jacobi theta functions $\\\\theta _1 ,~\\\\theta _2 $ and infinite series over trigonometric and hyperbolic functions.\",\"PeriodicalId\":56087,\"journal\":{\"name\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"volume\":\"73 1\",\"pages\":\"251-260\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbaa010\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/qjmam/hbaa010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/qjmam/hbaa010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

对于两个相等的圆形平行导电圆柱体周围的电势分布,存在四种不同的解决方案,充电到相同的电势。证明了它们的等价性,并讨论了由此产生的分析恒等式。这些恒等式涉及Jacobi椭圆函数$sn$、Jacobiθ函数$\theta_1、~\theta_2$以及三角函数和双曲函数上的无穷级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four solutions of a two-cylinder electrostatic problem, and identities resulting from their equivalence
Four distinct solutions exist for the potential distribution around two equal circular parallel conducting cylinders, charged to the same potential. Their equivalence is demonstrated, and the resulting analytical identities are discussed. The identities relate the Jacobi elliptic function $sn$, the Jacobi theta functions $\theta _1 ,~\theta _2 $ and infinite series over trigonometric and hyperbolic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信