大数据分析中的性别偏见

IF 0.6 4区 管理学 Q1 HISTORY
T. Misa
{"title":"大数据分析中的性别偏见","authors":"T. Misa","doi":"10.7560/IC57303","DOIUrl":null,"url":null,"abstract":"abstract:This article combines humanistic \"data critique\" with informed inspection of big data analysis. It measures gender bias when gender prediction software tools (Gender API, Namsor, and Genderize.io) are used in historical big data research. Gender bias is measured by contrasting personally identified computer science authors in the well-regarded DBLP dataset (1950–80) with exactly comparable results from the software tools. Implications for public understanding of gender bias in computing and the nature of the computing profession are outlined. Preliminary assessment of the Semantic Scholar dataset is presented. The conclusion combines humanistic approaches with selective use of big data methods.","PeriodicalId":42337,"journal":{"name":"Information & Culture","volume":"57 1","pages":"283 - 306"},"PeriodicalIF":0.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gender Bias in Big Data Analysis\",\"authors\":\"T. Misa\",\"doi\":\"10.7560/IC57303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:This article combines humanistic \\\"data critique\\\" with informed inspection of big data analysis. It measures gender bias when gender prediction software tools (Gender API, Namsor, and Genderize.io) are used in historical big data research. Gender bias is measured by contrasting personally identified computer science authors in the well-regarded DBLP dataset (1950–80) with exactly comparable results from the software tools. Implications for public understanding of gender bias in computing and the nature of the computing profession are outlined. Preliminary assessment of the Semantic Scholar dataset is presented. The conclusion combines humanistic approaches with selective use of big data methods.\",\"PeriodicalId\":42337,\"journal\":{\"name\":\"Information & Culture\",\"volume\":\"57 1\",\"pages\":\"283 - 306\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Culture\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.7560/IC57303\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HISTORY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Culture","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.7560/IC57303","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HISTORY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本文将人文主义的“数据批判”与大数据分析的知情检验相结合。在历史大数据研究中使用性别预测软件工具(gender API、Namsor和Genderize.io)时,它测量性别偏见。性别偏见是通过将著名的DBLP数据集(1950-80)中的个人计算机科学作者与软件工具的完全可比结果进行对比来衡量的。概述了公众对计算机性别偏见和计算机职业性质的理解的意义。对语义学者数据集进行了初步评估。结论将人文主义方法与大数据方法的选择性使用相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender Bias in Big Data Analysis
abstract:This article combines humanistic "data critique" with informed inspection of big data analysis. It measures gender bias when gender prediction software tools (Gender API, Namsor, and Genderize.io) are used in historical big data research. Gender bias is measured by contrasting personally identified computer science authors in the well-regarded DBLP dataset (1950–80) with exactly comparable results from the software tools. Implications for public understanding of gender bias in computing and the nature of the computing profession are outlined. Preliminary assessment of the Semantic Scholar dataset is presented. The conclusion combines humanistic approaches with selective use of big data methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信