ECDLP的Semaev朴素指数演算方法的复杂度界

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
K. Yokoyama, Masaya Yasuda, Yasushi Takahashi, Jun Kogure
{"title":"ECDLP的Semaev朴素指数演算方法的复杂度界","authors":"K. Yokoyama, Masaya Yasuda, Yasushi Takahashi, Jun Kogure","doi":"10.1515/jmc-2019-0029","DOIUrl":null,"url":null,"abstract":"Abstract Since Semaev introduced summation polynomials in 2004, a number of studies have been devoted to improving the index calculus method for solving the elliptic curve discrete logarithm problem (ECDLP) with better complexity than generic methods such as Pollard’s rho method and the baby-step and giant-step method (BSGS). In this paper, we provide a deep analysis of Gröbner basis computation for solving polynomial systems appearing in the point decomposition problem (PDP) in Semaev’s naive index calculus method. Our analysis relies on linear algebra under simple statistical assumptions on summation polynomials. We show that the ideal derived from PDP has a special structure and Gröbner basis computation for the ideal is regarded as an extension of the extended Euclidean algorithm. This enables us to obtain a lower bound on the cost of Gröbner basis computation. With the lower bound, we prove that the naive index calculus method cannot be more efficient than generic methods.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"460 - 485"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2019-0029","citationCount":"2","resultStr":"{\"title\":\"Complexity bounds on Semaev’s naive index calculus method for ECDLP\",\"authors\":\"K. Yokoyama, Masaya Yasuda, Yasushi Takahashi, Jun Kogure\",\"doi\":\"10.1515/jmc-2019-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since Semaev introduced summation polynomials in 2004, a number of studies have been devoted to improving the index calculus method for solving the elliptic curve discrete logarithm problem (ECDLP) with better complexity than generic methods such as Pollard’s rho method and the baby-step and giant-step method (BSGS). In this paper, we provide a deep analysis of Gröbner basis computation for solving polynomial systems appearing in the point decomposition problem (PDP) in Semaev’s naive index calculus method. Our analysis relies on linear algebra under simple statistical assumptions on summation polynomials. We show that the ideal derived from PDP has a special structure and Gröbner basis computation for the ideal is regarded as an extension of the extended Euclidean algorithm. This enables us to obtain a lower bound on the cost of Gröbner basis computation. With the lower bound, we prove that the naive index calculus method cannot be more efficient than generic methods.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"14 1\",\"pages\":\"460 - 485\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2019-0029\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2019-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2019-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

摘要自2004年Semaev引入求和多项式以来,许多研究致力于改进指数演算方法来解决椭圆曲线离散对数问题(ECDLP),该方法比Pollard的rho方法和小步和大步方法(BSGS)等通用方法具有更好的复杂度。在本文中,我们深入分析了在Semaev的朴素指数演算方法中,用于求解点分解问题(PDP)中出现的多项式系统的Gröbner基计算。我们的分析依赖于在求和多项式的简单统计假设下的线性代数。我们证明了从PDP导出的理想具有特殊的结构,并且该理想的Gröbner基计算被视为扩展欧几里得算法的扩展。这使我们能够获得Gröbner基计算成本的下界。利用下界,我们证明了朴素指数演算方法不可能比一般方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity bounds on Semaev’s naive index calculus method for ECDLP
Abstract Since Semaev introduced summation polynomials in 2004, a number of studies have been devoted to improving the index calculus method for solving the elliptic curve discrete logarithm problem (ECDLP) with better complexity than generic methods such as Pollard’s rho method and the baby-step and giant-step method (BSGS). In this paper, we provide a deep analysis of Gröbner basis computation for solving polynomial systems appearing in the point decomposition problem (PDP) in Semaev’s naive index calculus method. Our analysis relies on linear algebra under simple statistical assumptions on summation polynomials. We show that the ideal derived from PDP has a special structure and Gröbner basis computation for the ideal is regarded as an extension of the extended Euclidean algorithm. This enables us to obtain a lower bound on the cost of Gröbner basis computation. With the lower bound, we prove that the naive index calculus method cannot be more efficient than generic methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信