{"title":"某些晶体表示的约简和权重空间中的局部恒定性","authors":"S. Bhattacharya","doi":"10.5802/jtnb.1110","DOIUrl":null,"url":null,"abstract":"We study the mod $p$ reduction of crystalline local Galois representations of dimension 2 under certain conditions on its weight and slope. Berger showed that for a fixed non-zero trace of the Frobenius, the reduction process is locally constant for varying weights. By explicit computation we obtain an upper bound that is a linear function of the slope, for the radius of this local constancy around some special points in the weight space.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reduction of certain crystalline representations and local constancy in the weight space\",\"authors\":\"S. Bhattacharya\",\"doi\":\"10.5802/jtnb.1110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the mod $p$ reduction of crystalline local Galois representations of dimension 2 under certain conditions on its weight and slope. Berger showed that for a fixed non-zero trace of the Frobenius, the reduction process is locally constant for varying weights. By explicit computation we obtain an upper bound that is a linear function of the slope, for the radius of this local constancy around some special points in the weight space.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1110\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Reduction of certain crystalline representations and local constancy in the weight space
We study the mod $p$ reduction of crystalline local Galois representations of dimension 2 under certain conditions on its weight and slope. Berger showed that for a fixed non-zero trace of the Frobenius, the reduction process is locally constant for varying weights. By explicit computation we obtain an upper bound that is a linear function of the slope, for the radius of this local constancy around some special points in the weight space.