交换环的惰性极小环扩展从何而来

Pub Date : 2020-03-31 DOI:10.5666/KMJ.2020.60.1.53
D. Dobbs
{"title":"交换环的惰性极小环扩展从何而来","authors":"D. Dobbs","doi":"10.5666/KMJ.2020.60.1.53","DOIUrl":null,"url":null,"abstract":"Let (A,M) ⊂ (B,N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N . Suppose henceforth that M ⊆ N . If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A+N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from\",\"authors\":\"D. Dobbs\",\"doi\":\"10.5666/KMJ.2020.60.1.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (A,M) ⊂ (B,N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N . Suppose henceforth that M ⊆ N . If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A+N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2020.60.1.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2020.60.1.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设(A,M)⊂(B,N)是可交换的拟局部环。我们考虑存在环D的性质,使得a⊆D \8838B和扩展D \8834B是惰性的。实例表明,这种D的数目可以是任何非负整数或无穷大。这种D的存在并不意味着M⊆N。此后假设M⊆N。如果域扩展A/M⊆B/N是代数的,则这种D的存在并不意味着B是A上的积分(除非B具有Krull维数0)。如果A/M⊆B/N是极小域扩展,则存在唯一的这样的D,必然由D=A+N给出(但不必是N=MB的情况)。反之亦然,即使M=N和B/M是有限的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from
Let (A,M) ⊂ (B,N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N . Suppose henceforth that M ⊆ N . If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A+N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信