Andrejs Podkoritovs, D. Serdjuks, V. Goremikins, K. Buka-Vaivade, M. Kirsanov
{"title":"空间倒三角钢特拉斯的性能","authors":"Andrejs Podkoritovs, D. Serdjuks, V. Goremikins, K. Buka-Vaivade, M. Kirsanov","doi":"10.7250/BJRBE.2020-15.494","DOIUrl":null,"url":null,"abstract":"Behaviour of the inverted triangular truss, which is widely used as a bridge girder, was investigated analytically and experimentally. Cold-formed square hollow cross-sections of steel grade S355J2H with dimensions 80 mm × 4 mm, 90 mm × 4 mm and 40 mm × 4 mm were selected for the top and bottom chords and bracing elements of the truss with 12.56 m span, correspondingly. Five FEM models were developed using software Dlubal RFEM. The main specific feature of the models is the difference in modelling of joint behaviour considering plastic behaviour and stiffness of truss connections. It was shown that the FE model of the truss where the members were modelled by the truss type finite elements and the joints modelled by the shell type ones allows predicting behaviour of the truss with precision of up to 3.9%. It was shown that precision of the suggested FEM model grows 4.36 to 4.62 times in comparison with the traditional FEM models where the members were modelled by the truss finite elements with the pinned and rigid joints in case of plastic joint behaviour. Precision of the suggested FEM model is identical to that of the traditional FEM models regarding the case of elastic joint behaviour.","PeriodicalId":55402,"journal":{"name":"Baltic Journal of Road and Bridge Engineering","volume":"15 1","pages":"54-70"},"PeriodicalIF":0.6000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behaviour of a Space Inverted Triangular Steel Truss\",\"authors\":\"Andrejs Podkoritovs, D. Serdjuks, V. Goremikins, K. Buka-Vaivade, M. Kirsanov\",\"doi\":\"10.7250/BJRBE.2020-15.494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Behaviour of the inverted triangular truss, which is widely used as a bridge girder, was investigated analytically and experimentally. Cold-formed square hollow cross-sections of steel grade S355J2H with dimensions 80 mm × 4 mm, 90 mm × 4 mm and 40 mm × 4 mm were selected for the top and bottom chords and bracing elements of the truss with 12.56 m span, correspondingly. Five FEM models were developed using software Dlubal RFEM. The main specific feature of the models is the difference in modelling of joint behaviour considering plastic behaviour and stiffness of truss connections. It was shown that the FE model of the truss where the members were modelled by the truss type finite elements and the joints modelled by the shell type ones allows predicting behaviour of the truss with precision of up to 3.9%. It was shown that precision of the suggested FEM model grows 4.36 to 4.62 times in comparison with the traditional FEM models where the members were modelled by the truss finite elements with the pinned and rigid joints in case of plastic joint behaviour. Precision of the suggested FEM model is identical to that of the traditional FEM models regarding the case of elastic joint behaviour.\",\"PeriodicalId\":55402,\"journal\":{\"name\":\"Baltic Journal of Road and Bridge Engineering\",\"volume\":\"15 1\",\"pages\":\"54-70\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Road and Bridge Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7250/BJRBE.2020-15.494\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7250/BJRBE.2020-15.494","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Behaviour of a Space Inverted Triangular Steel Truss
Behaviour of the inverted triangular truss, which is widely used as a bridge girder, was investigated analytically and experimentally. Cold-formed square hollow cross-sections of steel grade S355J2H with dimensions 80 mm × 4 mm, 90 mm × 4 mm and 40 mm × 4 mm were selected for the top and bottom chords and bracing elements of the truss with 12.56 m span, correspondingly. Five FEM models were developed using software Dlubal RFEM. The main specific feature of the models is the difference in modelling of joint behaviour considering plastic behaviour and stiffness of truss connections. It was shown that the FE model of the truss where the members were modelled by the truss type finite elements and the joints modelled by the shell type ones allows predicting behaviour of the truss with precision of up to 3.9%. It was shown that precision of the suggested FEM model grows 4.36 to 4.62 times in comparison with the traditional FEM models where the members were modelled by the truss finite elements with the pinned and rigid joints in case of plastic joint behaviour. Precision of the suggested FEM model is identical to that of the traditional FEM models regarding the case of elastic joint behaviour.
期刊介绍:
THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH:
road and bridge research and design,
road construction materials and technologies,
bridge construction materials and technologies,
road and bridge repair,
road and bridge maintenance,
traffic safety,
road and bridge information technologies,
environmental issues,
road climatology,
low-volume roads,
normative documentation,
quality management and assurance,
road infrastructure and its assessment,
asset management,
road and bridge construction financing,
specialist pre-service and in-service training;