{"title":"局部凸空间上三元函数统计Cesàro可和性的新Tauberian定理","authors":"Carlos Granados, A. Das","doi":"10.52737/18291163-2022.14.5-1-15","DOIUrl":null,"url":null,"abstract":"In this paper, we prove two new Tauberian theorems via statistical Cesàro summability mean of a continuous function of three variables by using oscillating behavior and De la Vallée Poussin means of a triple integral over a locally convex space. Moreover, some remarks and corollaries are provided here to support our results.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New Tauberian theorems for statistical Cesàro summability of a function of three variables over a locally convex space\",\"authors\":\"Carlos Granados, A. Das\",\"doi\":\"10.52737/18291163-2022.14.5-1-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove two new Tauberian theorems via statistical Cesàro summability mean of a continuous function of three variables by using oscillating behavior and De la Vallée Poussin means of a triple integral over a locally convex space. Moreover, some remarks and corollaries are provided here to support our results.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2022.14.5-1-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2022.14.5-1-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
本文利用振荡行为和局部凸空间上三积分的De la Vallée Poussin均值,通过三元连续函数的统计Cesàro可和性均值,证明了两个新的Tauberian定理。此外,这里提供了一些评论和推论,以支持我们的结果。
New Tauberian theorems for statistical Cesàro summability of a function of three variables over a locally convex space
In this paper, we prove two new Tauberian theorems via statistical Cesàro summability mean of a continuous function of three variables by using oscillating behavior and De la Vallée Poussin means of a triple integral over a locally convex space. Moreover, some remarks and corollaries are provided here to support our results.