{"title":"典型温带至干旱气候中的基流指数特征:概念分析和模拟实验,以评估气候强迫特征和集水区地质环境的相对作用","authors":"A. Longobardi, P. Villani","doi":"10.2166/nh.2023.026","DOIUrl":null,"url":null,"abstract":"\n Low-flow hydrological features are crucial for efficient development and integrated water resources management. Among others, the BaseFlow Index ‘BFI’ is one of the most important low-flow indices. Many studies have demonstrated that it is related to several topographic parameters, climate, vegetation and soil types and to catchment geology. With the aim to enhance the knowledge about the climate and catchment properties’ relative control on the ‘BFI’, an approach consisting of an empirical analysis, applied to a large area located in Southern Italy, characterized by a typical Mediterranean environment, is followed by a simulation experiment, considering climate settings, at the pan-European scale, typical of temperate to dry climate regimes. Main findings have revealed that (i) the correlation structure between the ‘BFI’ and the precipitation volume, at the annual scale, is affected by both climate variability and catchment properties; (ii) the ‘BFI’ variability is strongly conditioned by climate intra- and inter-annual variability; (iii) the major role is, however, assigned to the geological catchment features, with poorly and well-drained catchments behaving differently in response to similar climate forcing variability.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Baseflow index characterization in typical temperate to dry climates: conceptual analysis and simulation experiment to assess the relative role of climate forcing features and catchment geological settings\",\"authors\":\"A. Longobardi, P. Villani\",\"doi\":\"10.2166/nh.2023.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Low-flow hydrological features are crucial for efficient development and integrated water resources management. Among others, the BaseFlow Index ‘BFI’ is one of the most important low-flow indices. Many studies have demonstrated that it is related to several topographic parameters, climate, vegetation and soil types and to catchment geology. With the aim to enhance the knowledge about the climate and catchment properties’ relative control on the ‘BFI’, an approach consisting of an empirical analysis, applied to a large area located in Southern Italy, characterized by a typical Mediterranean environment, is followed by a simulation experiment, considering climate settings, at the pan-European scale, typical of temperate to dry climate regimes. Main findings have revealed that (i) the correlation structure between the ‘BFI’ and the precipitation volume, at the annual scale, is affected by both climate variability and catchment properties; (ii) the ‘BFI’ variability is strongly conditioned by climate intra- and inter-annual variability; (iii) the major role is, however, assigned to the geological catchment features, with poorly and well-drained catchments behaving differently in response to similar climate forcing variability.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.026\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.026","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Baseflow index characterization in typical temperate to dry climates: conceptual analysis and simulation experiment to assess the relative role of climate forcing features and catchment geological settings
Low-flow hydrological features are crucial for efficient development and integrated water resources management. Among others, the BaseFlow Index ‘BFI’ is one of the most important low-flow indices. Many studies have demonstrated that it is related to several topographic parameters, climate, vegetation and soil types and to catchment geology. With the aim to enhance the knowledge about the climate and catchment properties’ relative control on the ‘BFI’, an approach consisting of an empirical analysis, applied to a large area located in Southern Italy, characterized by a typical Mediterranean environment, is followed by a simulation experiment, considering climate settings, at the pan-European scale, typical of temperate to dry climate regimes. Main findings have revealed that (i) the correlation structure between the ‘BFI’ and the precipitation volume, at the annual scale, is affected by both climate variability and catchment properties; (ii) the ‘BFI’ variability is strongly conditioned by climate intra- and inter-annual variability; (iii) the major role is, however, assigned to the geological catchment features, with poorly and well-drained catchments behaving differently in response to similar climate forcing variability.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.