T. A. Tawfik, Doha M. AlSaffar, B. Tayeh, K. Metwally, I. Elkattan
{"title":"膨胀粘土集料、偏高岭土和硅灰对改性轻量化混凝土性能的影响","authors":"T. A. Tawfik, Doha M. AlSaffar, B. Tayeh, K. Metwally, I. Elkattan","doi":"10.1080/12269328.2021.1887002","DOIUrl":null,"url":null,"abstract":"ABSTRACT This investigation aimed to assess the effect of micro-cementitious materials on the mechanical properties and sulphate resistance of modified eco-efficient lightweight concrete (MDLWC). A modified lightweight concrete (MDLWC) was produced by mixing Light-expanded clay aggregate (LECA) with normal coarse aggregate (dolomite cushed rock). The impact of using different percentage of micro-cementitious materials which was micro silica fume (5–20%) and metakaolin(10–35%) on the mechanical properties (compressive strength, splitting tensile and flexural strength), waves transmission velocity of the ultrasonic pulses and sulphate resistivity of MDLWC was studied. The overall results illustrated that the use of micro-cementitious materials in MDLWC caused an enhancement on MDLWC properties. However, the MDLWC specimens containing micro silica fume showed better results than metakaolin. The best results were observed while using samples containing 10% micro silica fume and 30 % metakaolin individually or combined. In addition, the usage of combined mixture of 10% micro silica fume and 30% metakaolin MDLWC mix showed the best improvement rate in compressive, splitting tensile and flexural strengths by 25, 53.3 and 66.6%, respectively, compared to control MDLWC specimens. On the other hand, the direct empirical equations were proposed on the basis of strong and nonlinear regression analysis using the test data to predict the mechanical properties of MDLWC relationships, rationally. Experimental tests were conducted on ultrasonic pulses velocity, which showed good correlation equation strength of MDLWC. Scanning electron microscopy illustrated that the pores of concrete is smaller for SF and MK individually or combined with MDLWC compared to the control concrete, demonstrating an enhancement within the interfacial microstructure with the pozzolanas incorporation. The previous difference could be explained due to the concrete strength and sulphate penetrability to an extent.","PeriodicalId":12714,"journal":{"name":"Geosystem Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/12269328.2021.1887002","citationCount":"36","resultStr":"{\"title\":\"Role of expanded clay aggregate, metakaolin and silica fume on the of modified lightweight concrete properties\",\"authors\":\"T. A. Tawfik, Doha M. AlSaffar, B. Tayeh, K. Metwally, I. Elkattan\",\"doi\":\"10.1080/12269328.2021.1887002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This investigation aimed to assess the effect of micro-cementitious materials on the mechanical properties and sulphate resistance of modified eco-efficient lightweight concrete (MDLWC). A modified lightweight concrete (MDLWC) was produced by mixing Light-expanded clay aggregate (LECA) with normal coarse aggregate (dolomite cushed rock). The impact of using different percentage of micro-cementitious materials which was micro silica fume (5–20%) and metakaolin(10–35%) on the mechanical properties (compressive strength, splitting tensile and flexural strength), waves transmission velocity of the ultrasonic pulses and sulphate resistivity of MDLWC was studied. The overall results illustrated that the use of micro-cementitious materials in MDLWC caused an enhancement on MDLWC properties. However, the MDLWC specimens containing micro silica fume showed better results than metakaolin. The best results were observed while using samples containing 10% micro silica fume and 30 % metakaolin individually or combined. In addition, the usage of combined mixture of 10% micro silica fume and 30% metakaolin MDLWC mix showed the best improvement rate in compressive, splitting tensile and flexural strengths by 25, 53.3 and 66.6%, respectively, compared to control MDLWC specimens. On the other hand, the direct empirical equations were proposed on the basis of strong and nonlinear regression analysis using the test data to predict the mechanical properties of MDLWC relationships, rationally. Experimental tests were conducted on ultrasonic pulses velocity, which showed good correlation equation strength of MDLWC. Scanning electron microscopy illustrated that the pores of concrete is smaller for SF and MK individually or combined with MDLWC compared to the control concrete, demonstrating an enhancement within the interfacial microstructure with the pozzolanas incorporation. The previous difference could be explained due to the concrete strength and sulphate penetrability to an extent.\",\"PeriodicalId\":12714,\"journal\":{\"name\":\"Geosystem Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/12269328.2021.1887002\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosystem Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/12269328.2021.1887002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystem Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12269328.2021.1887002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Role of expanded clay aggregate, metakaolin and silica fume on the of modified lightweight concrete properties
ABSTRACT This investigation aimed to assess the effect of micro-cementitious materials on the mechanical properties and sulphate resistance of modified eco-efficient lightweight concrete (MDLWC). A modified lightweight concrete (MDLWC) was produced by mixing Light-expanded clay aggregate (LECA) with normal coarse aggregate (dolomite cushed rock). The impact of using different percentage of micro-cementitious materials which was micro silica fume (5–20%) and metakaolin(10–35%) on the mechanical properties (compressive strength, splitting tensile and flexural strength), waves transmission velocity of the ultrasonic pulses and sulphate resistivity of MDLWC was studied. The overall results illustrated that the use of micro-cementitious materials in MDLWC caused an enhancement on MDLWC properties. However, the MDLWC specimens containing micro silica fume showed better results than metakaolin. The best results were observed while using samples containing 10% micro silica fume and 30 % metakaolin individually or combined. In addition, the usage of combined mixture of 10% micro silica fume and 30% metakaolin MDLWC mix showed the best improvement rate in compressive, splitting tensile and flexural strengths by 25, 53.3 and 66.6%, respectively, compared to control MDLWC specimens. On the other hand, the direct empirical equations were proposed on the basis of strong and nonlinear regression analysis using the test data to predict the mechanical properties of MDLWC relationships, rationally. Experimental tests were conducted on ultrasonic pulses velocity, which showed good correlation equation strength of MDLWC. Scanning electron microscopy illustrated that the pores of concrete is smaller for SF and MK individually or combined with MDLWC compared to the control concrete, demonstrating an enhancement within the interfacial microstructure with the pozzolanas incorporation. The previous difference could be explained due to the concrete strength and sulphate penetrability to an extent.