一类非齐次抛物型方程的适定性和爆破

IF 0.7 Q3 MATHEMATICS, APPLIED
M. Majdoub
{"title":"一类非齐次抛物型方程的适定性和爆破","authors":"M. Majdoub","doi":"10.7153/DEA-2021-13-06","DOIUrl":null,"url":null,"abstract":"We consider the large-time behavior of sign-changing solutions of the inhomogeneous equation $u_t-\\Delta u=|x|^\\alpha |u|^{p}+\\zeta(t)\\,{\\mathbf w}(x)$ in $(0,\\infty)\\times{\\mathbb{R}}^N$, where $N\\geq 3$, $p>1$, $\\alpha>-2$, $\\zeta, {\\mathbf w}$ are continuous functions such that $\\zeta(t)\\sim t^\\sigma$ as $t\\to 0$, $\\zeta(t)\\sim t^m$ as $t\\to\\infty$ . We obtain local existence for $\\sigma>-1$. We also show the following: \n$-$ If $m\\leq 0$, $p 0$, then all solutions blow up in finite time; \n$-$ If $m> 0$, $p>1$ and $\\int_{\\mathbb{R}^N}{\\mathbf w}(x)dx>0$, then all solutions blow up in finite time. \nThe main novelty in this paper is that blow up depends on the behavior of $\\zeta$ at infinity.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Well-posedness and blow-up for an inhomogeneous semilinear parabolic equation\",\"authors\":\"M. Majdoub\",\"doi\":\"10.7153/DEA-2021-13-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the large-time behavior of sign-changing solutions of the inhomogeneous equation $u_t-\\\\Delta u=|x|^\\\\alpha |u|^{p}+\\\\zeta(t)\\\\,{\\\\mathbf w}(x)$ in $(0,\\\\infty)\\\\times{\\\\mathbb{R}}^N$, where $N\\\\geq 3$, $p>1$, $\\\\alpha>-2$, $\\\\zeta, {\\\\mathbf w}$ are continuous functions such that $\\\\zeta(t)\\\\sim t^\\\\sigma$ as $t\\\\to 0$, $\\\\zeta(t)\\\\sim t^m$ as $t\\\\to\\\\infty$ . We obtain local existence for $\\\\sigma>-1$. We also show the following: \\n$-$ If $m\\\\leq 0$, $p 0$, then all solutions blow up in finite time; \\n$-$ If $m> 0$, $p>1$ and $\\\\int_{\\\\mathbb{R}^N}{\\\\mathbf w}(x)dx>0$, then all solutions blow up in finite time. \\nThe main novelty in this paper is that blow up depends on the behavior of $\\\\zeta$ at infinity.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2021-13-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑非齐次方程$u_t-\Delta u=|x|^\alpha|u|^{p}+\zeta(t)\,{\mathbf w}(x)$在$(0,\infty)\times{\math bb{R}}^N$中的变号解的大时间行为,其中$N\geq3$,$p>1$,$\alpha>-2$,$\zeta,{\ mathbf w}$是连续函数,使得$\ze塔(t)\sim t^\sigma$为$t\到0$,$\ zeta(t)\sim t^m$作为$t\到\infty$。我们得到$\sigma>-1$的局部存在性。我们还展示了以下内容:$-$如果$m\leq0$,$p0$,则所有解都在有限时间内爆炸;$-$如果$m>0$,$p>1$和$\int_{\mathbb{R}^N}{\math bf w}(x)dx>0$,则所有解在有限时间内爆炸。本文的主要新颖之处在于,爆炸取决于$\zeta$在无穷大处的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness and blow-up for an inhomogeneous semilinear parabolic equation
We consider the large-time behavior of sign-changing solutions of the inhomogeneous equation $u_t-\Delta u=|x|^\alpha |u|^{p}+\zeta(t)\,{\mathbf w}(x)$ in $(0,\infty)\times{\mathbb{R}}^N$, where $N\geq 3$, $p>1$, $\alpha>-2$, $\zeta, {\mathbf w}$ are continuous functions such that $\zeta(t)\sim t^\sigma$ as $t\to 0$, $\zeta(t)\sim t^m$ as $t\to\infty$ . We obtain local existence for $\sigma>-1$. We also show the following: $-$ If $m\leq 0$, $p 0$, then all solutions blow up in finite time; $-$ If $m> 0$, $p>1$ and $\int_{\mathbb{R}^N}{\mathbf w}(x)dx>0$, then all solutions blow up in finite time. The main novelty in this paper is that blow up depends on the behavior of $\zeta$ at infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信