温暖的酸化海水:白云石溶液

IF 2 4区 地球科学 Q1 GEOLOGY
J. Rivers
{"title":"温暖的酸化海水:白云石溶液","authors":"J. Rivers","doi":"10.2110/jsr.2022.087","DOIUrl":null,"url":null,"abstract":"\n The “dolomite problem” is the product of two distinct observations. First, there are massive amounts of ancient marine limestone (CaCO3) deposits that have been replaced by the mineral dolomite (MgCa(CO3)2). However, recent (Holocene and Pleistocene) marine deposits contain relatively minuscule amounts of dolomite, although the occurrence of small quantities of dolomite is observed in many modern settings, from deep marine to supratidal. Second, low-temperature synthesis of dolomite in laboratory settings has been elusive, particularly in comparison to the ease with which common marine calcium carbonate minerals (aragonite and calcite) can be synthesized. Since low-temperature solid-state diffusion can be discounted as a method for Mg incorporation into calcium carbonate (as it operates on time scales too long to matter), the replacement of CaCO3 by dolomite is one of dissolution followed by precipitation. Therefore, an often overlooked but required factor in the replacement of limestone by dolomite is that of undersaturation regarding the original calcium carbonate mineral during replacement. Such conditions could conceivably be caused by rapid dolomite growth relative to aragonite and calcite dissolution–precipitation reactions, but laboratory studies, modern systems analyses, and observations of ancient deposits all point to this possibility being uncommon because dolomite growth is kinetically inhibited at low temperature. Pressure solution by force of dolomite crystallization is a second possible driver for CaCO3 undersaturation, but requires a confining stress most likely attained through burial. However, based on petrographic observations, significant amounts of ancient dolomite replaced limestone before burial (synsedimentary dolomite), and many such platforms have not suffered any significant burial. Because these possibilities of undersaturation caused by dolomite precipitation and crystal growth can be largely discounted, the undersaturation required for “dolomitization” to proceed is most likely to be externally forced. In modern natural systems, undersaturation and selective CaCO3 dissolution in marine porewaters is very common, even in warm-water environments, being forced by the breakdown of organic matter. Such dissolution is frequently attended, to varying degrees, by precipitation of a kinetically-less-favored but thermodynamically more stable phase of CaCO3. Laboratory studies as well as observations of modern systems show that when undersaturation is reached with respect to all common marine CaCO3 phases, dolomite assumes the role of this kinetically-less-favored precipitate. This degree of undersaturation is uncommon in modern shallow marine pore systems in warm-water settings, but it was more common during times of elevated atmospheric CO2, and ocean acidification. Furthermore, because oxidation of organic matter drives dolomite formation, near-surface organic-rich deposits such as the remains of microbial mat communities, were more predisposed to dolomite replacement in the acidified oceans of the ancient past relative to contemporaneous deposits that contained less organic matter. These observations lend to a more harmonious explanation for the abundance and occurrence of dolomite through time.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Warm acidified seawater: a dolomite solution\",\"authors\":\"J. Rivers\",\"doi\":\"10.2110/jsr.2022.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The “dolomite problem” is the product of two distinct observations. First, there are massive amounts of ancient marine limestone (CaCO3) deposits that have been replaced by the mineral dolomite (MgCa(CO3)2). However, recent (Holocene and Pleistocene) marine deposits contain relatively minuscule amounts of dolomite, although the occurrence of small quantities of dolomite is observed in many modern settings, from deep marine to supratidal. Second, low-temperature synthesis of dolomite in laboratory settings has been elusive, particularly in comparison to the ease with which common marine calcium carbonate minerals (aragonite and calcite) can be synthesized. Since low-temperature solid-state diffusion can be discounted as a method for Mg incorporation into calcium carbonate (as it operates on time scales too long to matter), the replacement of CaCO3 by dolomite is one of dissolution followed by precipitation. Therefore, an often overlooked but required factor in the replacement of limestone by dolomite is that of undersaturation regarding the original calcium carbonate mineral during replacement. Such conditions could conceivably be caused by rapid dolomite growth relative to aragonite and calcite dissolution–precipitation reactions, but laboratory studies, modern systems analyses, and observations of ancient deposits all point to this possibility being uncommon because dolomite growth is kinetically inhibited at low temperature. Pressure solution by force of dolomite crystallization is a second possible driver for CaCO3 undersaturation, but requires a confining stress most likely attained through burial. However, based on petrographic observations, significant amounts of ancient dolomite replaced limestone before burial (synsedimentary dolomite), and many such platforms have not suffered any significant burial. Because these possibilities of undersaturation caused by dolomite precipitation and crystal growth can be largely discounted, the undersaturation required for “dolomitization” to proceed is most likely to be externally forced. In modern natural systems, undersaturation and selective CaCO3 dissolution in marine porewaters is very common, even in warm-water environments, being forced by the breakdown of organic matter. Such dissolution is frequently attended, to varying degrees, by precipitation of a kinetically-less-favored but thermodynamically more stable phase of CaCO3. Laboratory studies as well as observations of modern systems show that when undersaturation is reached with respect to all common marine CaCO3 phases, dolomite assumes the role of this kinetically-less-favored precipitate. This degree of undersaturation is uncommon in modern shallow marine pore systems in warm-water settings, but it was more common during times of elevated atmospheric CO2, and ocean acidification. Furthermore, because oxidation of organic matter drives dolomite formation, near-surface organic-rich deposits such as the remains of microbial mat communities, were more predisposed to dolomite replacement in the acidified oceans of the ancient past relative to contemporaneous deposits that contained less organic matter. These observations lend to a more harmonious explanation for the abundance and occurrence of dolomite through time.\",\"PeriodicalId\":17044,\"journal\":{\"name\":\"Journal of Sedimentary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sedimentary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2110/jsr.2022.087\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2022.087","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

“白云石问题”是两个不同观察结果的产物。首先,有大量的古代海洋石灰岩(CaCO3)矿床已被矿物白云石(MgCa(CO3)2)所取代。然而,最近(全新世和更新世)的海洋沉积物含有相对少量的白云石,尽管在从深海到潮上带的许多现代环境中都观察到少量白云石的存在。其次,在实验室环境中低温合成白云石一直很难,特别是与普通海洋碳酸钙矿物(文石和方解石)的合成相比。由于低温固态扩散可以被认为是将镁掺入碳酸钙的一种方法(因为它在时间尺度上运行的时间太长而不起作用),白云石取代CaCO3是一种先溶解后沉淀的方法。因此,在白云石替代石灰石的过程中,一个经常被忽视但又必须考虑的因素是在替代过程中原始碳酸钙矿物的不饱和。这种情况可能是由白云石相对于文石和方解石的快速溶解-沉淀反应引起的,但实验室研究、现代系统分析和对古代矿床的观察都表明,这种可能性并不常见,因为白云石的生长在低温下受到动力学抑制。白云石结晶力的压力溶解是CaCO3不饱和的第二个可能驱动因素,但需要最有可能通过埋藏获得的围压。然而,根据岩相观察,大量的古代白云石在埋藏前取代了石灰岩(同沉积白云石),许多这样的平台没有受到任何重大的埋藏。由于白云石沉淀和晶体生长导致的这些不饱和的可能性在很大程度上可以忽略,因此进行“白云石化”所需的不饱和最有可能是外部强迫的。在现代自然系统中,海洋孔隙水中的不饱和和选择性CaCO3溶解非常常见,即使在温水环境中也是如此,这是由于有机物的分解所造成的。这种溶解经常在不同程度上伴随着动力学上不太有利但热力学上更稳定的CaCO3相的沉淀。实验室研究以及对现代系统的观察表明,当所有常见的海洋CaCO3相都达到不饱和时,白云石就扮演了这种动力学上不太有利的沉淀物的角色。这种不饱和程度在温暖水域的现代浅海孔隙系统中并不常见,但在大气二氧化碳含量升高和海洋酸化时期更为常见。此外,由于有机物的氧化驱动白云石的形成,与有机物含量较低的同期沉积物相比,近地表富含有机物的沉积物,如微生物席群落的遗迹,更容易在古代酸化海洋中被白云石取代。这些观测结果为白云岩的丰度和随时间的变化提供了更和谐的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Warm acidified seawater: a dolomite solution
The “dolomite problem” is the product of two distinct observations. First, there are massive amounts of ancient marine limestone (CaCO3) deposits that have been replaced by the mineral dolomite (MgCa(CO3)2). However, recent (Holocene and Pleistocene) marine deposits contain relatively minuscule amounts of dolomite, although the occurrence of small quantities of dolomite is observed in many modern settings, from deep marine to supratidal. Second, low-temperature synthesis of dolomite in laboratory settings has been elusive, particularly in comparison to the ease with which common marine calcium carbonate minerals (aragonite and calcite) can be synthesized. Since low-temperature solid-state diffusion can be discounted as a method for Mg incorporation into calcium carbonate (as it operates on time scales too long to matter), the replacement of CaCO3 by dolomite is one of dissolution followed by precipitation. Therefore, an often overlooked but required factor in the replacement of limestone by dolomite is that of undersaturation regarding the original calcium carbonate mineral during replacement. Such conditions could conceivably be caused by rapid dolomite growth relative to aragonite and calcite dissolution–precipitation reactions, but laboratory studies, modern systems analyses, and observations of ancient deposits all point to this possibility being uncommon because dolomite growth is kinetically inhibited at low temperature. Pressure solution by force of dolomite crystallization is a second possible driver for CaCO3 undersaturation, but requires a confining stress most likely attained through burial. However, based on petrographic observations, significant amounts of ancient dolomite replaced limestone before burial (synsedimentary dolomite), and many such platforms have not suffered any significant burial. Because these possibilities of undersaturation caused by dolomite precipitation and crystal growth can be largely discounted, the undersaturation required for “dolomitization” to proceed is most likely to be externally forced. In modern natural systems, undersaturation and selective CaCO3 dissolution in marine porewaters is very common, even in warm-water environments, being forced by the breakdown of organic matter. Such dissolution is frequently attended, to varying degrees, by precipitation of a kinetically-less-favored but thermodynamically more stable phase of CaCO3. Laboratory studies as well as observations of modern systems show that when undersaturation is reached with respect to all common marine CaCO3 phases, dolomite assumes the role of this kinetically-less-favored precipitate. This degree of undersaturation is uncommon in modern shallow marine pore systems in warm-water settings, but it was more common during times of elevated atmospheric CO2, and ocean acidification. Furthermore, because oxidation of organic matter drives dolomite formation, near-surface organic-rich deposits such as the remains of microbial mat communities, were more predisposed to dolomite replacement in the acidified oceans of the ancient past relative to contemporaneous deposits that contained less organic matter. These observations lend to a more harmonious explanation for the abundance and occurrence of dolomite through time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信