{"title":"有限渐近维均匀可收缩流形上标量曲率的衰减","authors":"Jinmin Wang, Zhizhang Xie, Guoliang Yu","doi":"10.1002/cpa.22128","DOIUrl":null,"url":null,"abstract":"<p>Gromov proved a quadratic decay inequality of scalar curvature for a class of complete manifolds. In this paper, we prove that for any uniformly contractible manifold with finite asymptotic dimension, its scalar curvature decays to zero at a rate depending only on the contractibility radius of the manifold and the diameter control of the asymptotic dimension. We construct examples of uniformly contractible manifolds with finite asymptotic dimension whose scalar curvature functions decay arbitrarily slowly. This shows that our result is the best possible. We prove our result by studying the index pairing between Dirac operators and compactly supported vector bundles with Lipschitz control. A key technical ingredient for the proof of our main result is a Lipschitz control for the topological <i>K</i>-theory of finite dimensional simplicial complexes.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"372-440"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Decay of scalar curvature on uniformly contractible manifolds with finite asymptotic dimension\",\"authors\":\"Jinmin Wang, Zhizhang Xie, Guoliang Yu\",\"doi\":\"10.1002/cpa.22128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gromov proved a quadratic decay inequality of scalar curvature for a class of complete manifolds. In this paper, we prove that for any uniformly contractible manifold with finite asymptotic dimension, its scalar curvature decays to zero at a rate depending only on the contractibility radius of the manifold and the diameter control of the asymptotic dimension. We construct examples of uniformly contractible manifolds with finite asymptotic dimension whose scalar curvature functions decay arbitrarily slowly. This shows that our result is the best possible. We prove our result by studying the index pairing between Dirac operators and compactly supported vector bundles with Lipschitz control. A key technical ingredient for the proof of our main result is a Lipschitz control for the topological <i>K</i>-theory of finite dimensional simplicial complexes.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 1\",\"pages\":\"372-440\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22128\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22128","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Decay of scalar curvature on uniformly contractible manifolds with finite asymptotic dimension
Gromov proved a quadratic decay inequality of scalar curvature for a class of complete manifolds. In this paper, we prove that for any uniformly contractible manifold with finite asymptotic dimension, its scalar curvature decays to zero at a rate depending only on the contractibility radius of the manifold and the diameter control of the asymptotic dimension. We construct examples of uniformly contractible manifolds with finite asymptotic dimension whose scalar curvature functions decay arbitrarily slowly. This shows that our result is the best possible. We prove our result by studying the index pairing between Dirac operators and compactly supported vector bundles with Lipschitz control. A key technical ingredient for the proof of our main result is a Lipschitz control for the topological K-theory of finite dimensional simplicial complexes.