{"title":"基于势的边界元法计算浮体水动力漂移力","authors":"H. Ghafari, M. Motallebi, H. Ghassemi","doi":"10.17512/jamcm.2020.4.06","DOIUrl":null,"url":null,"abstract":"This paper presents the calculation of the hydrodynamic drift force by using the potetial-based boundary element method (BEM). The potential theory and far-field wave drift forces solution will be described. The comparison of non-dimensional drift force for surge and heave motions are in good agreement between numerical and experimental data. The effect of different drafts and the radius of a cylinder on the drift forces (surge, heave and pitch) are presented and discussed. MSC 2010: 31B25, 76B15, 76B07","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Potential-based boundary element method to calculate the hydrodynamic drift force on the floating cylinder\",\"authors\":\"H. Ghafari, M. Motallebi, H. Ghassemi\",\"doi\":\"10.17512/jamcm.2020.4.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the calculation of the hydrodynamic drift force by using the potetial-based boundary element method (BEM). The potential theory and far-field wave drift forces solution will be described. The comparison of non-dimensional drift force for surge and heave motions are in good agreement between numerical and experimental data. The effect of different drafts and the radius of a cylinder on the drift forces (surge, heave and pitch) are presented and discussed. MSC 2010: 31B25, 76B15, 76B07\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2020.4.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2020.4.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Potential-based boundary element method to calculate the hydrodynamic drift force on the floating cylinder
This paper presents the calculation of the hydrodynamic drift force by using the potetial-based boundary element method (BEM). The potential theory and far-field wave drift forces solution will be described. The comparison of non-dimensional drift force for surge and heave motions are in good agreement between numerical and experimental data. The effect of different drafts and the radius of a cylinder on the drift forces (surge, heave and pitch) are presented and discussed. MSC 2010: 31B25, 76B15, 76B07