V. Agoshkov, V. Zalesny, V. Shutyaev, E. Parmuzin, N. Zakharova
{"title":"海洋动力模式的变分资料同化","authors":"V. Agoshkov, V. Zalesny, V. Shutyaev, E. Parmuzin, N. Zakharova","doi":"10.1515/rnam-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract The 4D variational data assimilation technique is presented for modelling the sea dynamics problems, developed at the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The approach is based on the splitting method for the mathematical model of sea dynamics and the minimization of cost functionals related to the observation data by solving an optimality system that involves the adjoint equations and observation and background error covariances. Efficient algorithms for solving the variational data assimilation problems are presented based on iterative processes with a special choice of iterative parameters. The technique is illustrated for the Black Sea dynamics model with variational data assimilation to restore the sea surface heat fluxes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational data assimilation for a sea dynamics model\",\"authors\":\"V. Agoshkov, V. Zalesny, V. Shutyaev, E. Parmuzin, N. Zakharova\",\"doi\":\"10.1515/rnam-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The 4D variational data assimilation technique is presented for modelling the sea dynamics problems, developed at the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The approach is based on the splitting method for the mathematical model of sea dynamics and the minimization of cost functionals related to the observation data by solving an optimality system that involves the adjoint equations and observation and background error covariances. Efficient algorithms for solving the variational data assimilation problems are presented based on iterative processes with a special choice of iterative parameters. The technique is illustrated for the Black Sea dynamics model with variational data assimilation to restore the sea surface heat fluxes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2022-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variational data assimilation for a sea dynamics model
Abstract The 4D variational data assimilation technique is presented for modelling the sea dynamics problems, developed at the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The approach is based on the splitting method for the mathematical model of sea dynamics and the minimization of cost functionals related to the observation data by solving an optimality system that involves the adjoint equations and observation and background error covariances. Efficient algorithms for solving the variational data assimilation problems are presented based on iterative processes with a special choice of iterative parameters. The technique is illustrated for the Black Sea dynamics model with variational data assimilation to restore the sea surface heat fluxes.