在μ¯,∂¯,∂,μ \overline{\mu }, \overline{\partial }, \partial生成的代数上,\mu

IF 0.5 Q3 MATHEMATICS
S. Auyeung, Jin-Cheng Guu, Jiahao Hu
{"title":"在μ¯,∂¯,∂,μ \\overline{\\mu }, \\overline{\\partial }, \\partial生成的代数上,\\mu","authors":"S. Auyeung, Jin-Cheng Guu, Jiahao Hu","doi":"10.1515/coma-2022-0149","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we determine the structure of the associative algebra generated by the differential operators μ ¯ , ∂ ¯ , ∂ \\overline{\\mu },\\overline{\\partial },\\partial , and μ \\mu that act on complex-valued differential forms of almost complex manifolds. This is done by showing that it is the universal enveloping algebra of the graded Lie algebra generated by these operators and determining the structure of the corresponding graded Lie algebra. We then determine the cohomology of this graded Lie algebra with respect to its canonical inner differential [ d , − ] \\left[d,-] , as well as its cohomology with respect to all its inner differentials.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the algebra generated by μ ¯ , ∂ ¯ , ∂ , μ \\\\overline{\\\\mu },\\\\overline{\\\\partial },\\\\partial ,\\\\mu\",\"authors\":\"S. Auyeung, Jin-Cheng Guu, Jiahao Hu\",\"doi\":\"10.1515/coma-2022-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we determine the structure of the associative algebra generated by the differential operators μ ¯ , ∂ ¯ , ∂ \\\\overline{\\\\mu },\\\\overline{\\\\partial },\\\\partial , and μ \\\\mu that act on complex-valued differential forms of almost complex manifolds. This is done by showing that it is the universal enveloping algebra of the graded Lie algebra generated by these operators and determining the structure of the corresponding graded Lie algebra. We then determine the cohomology of this graded Lie algebra with respect to its canonical inner differential [ d , − ] \\\\left[d,-] , as well as its cohomology with respect to all its inner differentials.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2022-0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2022-0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们确定了由作用于几乎复流形的复值微分形式的微分算子μ′、⏴′、õ\overline{\mu}、\overline}、\partial和μ\mu生成的结合代数的结构。这是通过证明它是由这些算子生成的分次李代数的泛包络代数,并确定相应的分次李代数的结构来实现的。然后,我们确定了这个分次李代数关于其正则内微分[d,−]\left[d,-]的上同调,以及关于其所有内微分的上同同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the algebra generated by μ ¯ , ∂ ¯ , ∂ , μ \overline{\mu },\overline{\partial },\partial ,\mu
Abstract In this note, we determine the structure of the associative algebra generated by the differential operators μ ¯ , ∂ ¯ , ∂ \overline{\mu },\overline{\partial },\partial , and μ \mu that act on complex-valued differential forms of almost complex manifolds. This is done by showing that it is the universal enveloping algebra of the graded Lie algebra generated by these operators and determining the structure of the corresponding graded Lie algebra. We then determine the cohomology of this graded Lie algebra with respect to its canonical inner differential [ d , − ] \left[d,-] , as well as its cohomology with respect to all its inner differentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信