{"title":"高分子纳米复合膜的分子动力学模拟研究","authors":"Azin Mazloom-Jalali, Z. Shariatinia","doi":"10.22052/JNS.2020.02.008","DOIUrl":null,"url":null,"abstract":"Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matrix was 1.25 g/cm3 but it was decreased to 1.16 g/cm3 in PLA and 1.02 g/cm3 in PEG. The potential energies of the CS, PLA and PEG DDSs were near 195000, 3700 and –4600 kcal/mol while their related non-bond energies were around 14000, –150 and –6150 kcal/mol, respectively, indicating the PEG composite had the most negative energies whereas the most positive values belonged to the CS system. The CS system revealed the greatest fractional free volume (FFV) of 77.232% but PLA offered the smallest FFV (65.804%). The radial distribution function (RDF) data displayed that the PIP molecules had strongest H-bond interactions with the CS chains which reflected the drug molecules would diffuse the slowest inside the CS nanocomposite. The diffusion coefficients for the PLA, PEG and CS systems were equal to 0.0183×10–4, 0.0163×10–4 and 0.0154×10–4 cm2/s, respectively approving the slowest drug diffusion was happened in the CS cell which certified the most controlled and sustained drug delivery.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"279-295"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Molecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug\",\"authors\":\"Azin Mazloom-Jalali, Z. Shariatinia\",\"doi\":\"10.22052/JNS.2020.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matrix was 1.25 g/cm3 but it was decreased to 1.16 g/cm3 in PLA and 1.02 g/cm3 in PEG. The potential energies of the CS, PLA and PEG DDSs were near 195000, 3700 and –4600 kcal/mol while their related non-bond energies were around 14000, –150 and –6150 kcal/mol, respectively, indicating the PEG composite had the most negative energies whereas the most positive values belonged to the CS system. The CS system revealed the greatest fractional free volume (FFV) of 77.232% but PLA offered the smallest FFV (65.804%). The radial distribution function (RDF) data displayed that the PIP molecules had strongest H-bond interactions with the CS chains which reflected the drug molecules would diffuse the slowest inside the CS nanocomposite. The diffusion coefficients for the PLA, PEG and CS systems were equal to 0.0183×10–4, 0.0163×10–4 and 0.0154×10–4 cm2/s, respectively approving the slowest drug diffusion was happened in the CS cell which certified the most controlled and sustained drug delivery.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"279-295\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.02.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.02.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Molecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug
Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matrix was 1.25 g/cm3 but it was decreased to 1.16 g/cm3 in PLA and 1.02 g/cm3 in PEG. The potential energies of the CS, PLA and PEG DDSs were near 195000, 3700 and –4600 kcal/mol while their related non-bond energies were around 14000, –150 and –6150 kcal/mol, respectively, indicating the PEG composite had the most negative energies whereas the most positive values belonged to the CS system. The CS system revealed the greatest fractional free volume (FFV) of 77.232% but PLA offered the smallest FFV (65.804%). The radial distribution function (RDF) data displayed that the PIP molecules had strongest H-bond interactions with the CS chains which reflected the drug molecules would diffuse the slowest inside the CS nanocomposite. The diffusion coefficients for the PLA, PEG and CS systems were equal to 0.0183×10–4, 0.0163×10–4 and 0.0154×10–4 cm2/s, respectively approving the slowest drug diffusion was happened in the CS cell which certified the most controlled and sustained drug delivery.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.