遍历动作的弱同宿群

Q2 Mathematics
V. Ryzhikov
{"title":"遍历动作的弱同宿群","authors":"V. Ryzhikov","doi":"10.1090/mosc/289","DOIUrl":null,"url":null,"abstract":"This work contains the following results: the trajectory fullness of the homoclinic groups, their connections with factors, K-property, weak multiple mixing; the ergodicity of the weakly homoclinic group for Gauss and Poisson actions; the triviality of the weakly homoclinic group for classes of rank-1 actions. Some open problems are discussed.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weakly homoclinic groups of ergodic actions\",\"authors\":\"V. Ryzhikov\",\"doi\":\"10.1090/mosc/289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work contains the following results: the trajectory fullness of the homoclinic groups, their connections with factors, K-property, weak multiple mixing; the ergodicity of the weakly homoclinic group for Gauss and Poisson actions; the triviality of the weakly homoclinic group for classes of rank-1 actions. Some open problems are discussed.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

这项工作包含以下结果:同宿群的轨迹填充度,它们与因子的联系,K性质,弱多重混合;高斯和泊松作用下弱同宿群的遍历性;关于秩为1的作用类的弱同宿群的平凡性。讨论了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly homoclinic groups of ergodic actions
This work contains the following results: the trajectory fullness of the homoclinic groups, their connections with factors, K-property, weak multiple mixing; the ergodicity of the weakly homoclinic group for Gauss and Poisson actions; the triviality of the weakly homoclinic group for classes of rank-1 actions. Some open problems are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信