J. Langeneck, C. Fourreau, M. Rousou, M. Barbieri, F. Maltagliati, L. Musco, A. Castelli
{"title":"环境特征驱动地中海拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合拟合","authors":"J. Langeneck, C. Fourreau, M. Rousou, M. Barbieri, F. Maltagliati, L. Musco, A. Castelli","doi":"10.1080/24750263.2022.2138588","DOIUrl":null,"url":null,"abstract":"Abstract Individuals identified as Aricidea assimilis Tebble, 1959 were collected from ten localities across the Mediterranean Sea from 0.5 to 225 m depth in order to have a wide coverage of the species habitats and geographic range and to assess the effects of environmental factors and biogeographical barriers on molecular and morphological diversity. Two mitochondrial and one nuclear markers were used to reconstruct phylogenetic relationships and test the occurrence of cryptic species. We observed two highly divergent lineages, one including all individuals from shallow, sandy environments (<10 m depth) and the other with the individuals from deeper muddy bottoms (30–225 m depth). Less pronounced divergence was detected between morphologically distinct brackish-water individuals and the remaining shallow-water individuals. The divergence observed between deep-water and shallow-water lineages is consistent with the hypothesis of distinct species. The ambiguous results of species delimitation tests applied to the two shallow-water sub-lineages might instead suggest a process of incipient speciation, even if this hypothesis needs additional evidence. These results suggest that sediment represents the main factor driving genetic divergence and ultimately cryptic speciation in A. assimilis, while other depth-associated factors and geographical barriers do not seem to significantly contribute to the genetic architecture of this species, suggesting the occurrence of wide-range larval dispersal.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Environmental features drive lineage diversification in the Aricidea assimilis species complex (Annelida, Paraonidae) in the Mediterranean Sea\",\"authors\":\"J. Langeneck, C. Fourreau, M. Rousou, M. Barbieri, F. Maltagliati, L. Musco, A. Castelli\",\"doi\":\"10.1080/24750263.2022.2138588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Individuals identified as Aricidea assimilis Tebble, 1959 were collected from ten localities across the Mediterranean Sea from 0.5 to 225 m depth in order to have a wide coverage of the species habitats and geographic range and to assess the effects of environmental factors and biogeographical barriers on molecular and morphological diversity. Two mitochondrial and one nuclear markers were used to reconstruct phylogenetic relationships and test the occurrence of cryptic species. We observed two highly divergent lineages, one including all individuals from shallow, sandy environments (<10 m depth) and the other with the individuals from deeper muddy bottoms (30–225 m depth). Less pronounced divergence was detected between morphologically distinct brackish-water individuals and the remaining shallow-water individuals. The divergence observed between deep-water and shallow-water lineages is consistent with the hypothesis of distinct species. The ambiguous results of species delimitation tests applied to the two shallow-water sub-lineages might instead suggest a process of incipient speciation, even if this hypothesis needs additional evidence. These results suggest that sediment represents the main factor driving genetic divergence and ultimately cryptic speciation in A. assimilis, while other depth-associated factors and geographical barriers do not seem to significantly contribute to the genetic architecture of this species, suggesting the occurrence of wide-range larval dispersal.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24750263.2022.2138588\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24750263.2022.2138588","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Environmental features drive lineage diversification in the Aricidea assimilis species complex (Annelida, Paraonidae) in the Mediterranean Sea
Abstract Individuals identified as Aricidea assimilis Tebble, 1959 were collected from ten localities across the Mediterranean Sea from 0.5 to 225 m depth in order to have a wide coverage of the species habitats and geographic range and to assess the effects of environmental factors and biogeographical barriers on molecular and morphological diversity. Two mitochondrial and one nuclear markers were used to reconstruct phylogenetic relationships and test the occurrence of cryptic species. We observed two highly divergent lineages, one including all individuals from shallow, sandy environments (<10 m depth) and the other with the individuals from deeper muddy bottoms (30–225 m depth). Less pronounced divergence was detected between morphologically distinct brackish-water individuals and the remaining shallow-water individuals. The divergence observed between deep-water and shallow-water lineages is consistent with the hypothesis of distinct species. The ambiguous results of species delimitation tests applied to the two shallow-water sub-lineages might instead suggest a process of incipient speciation, even if this hypothesis needs additional evidence. These results suggest that sediment represents the main factor driving genetic divergence and ultimately cryptic speciation in A. assimilis, while other depth-associated factors and geographical barriers do not seem to significantly contribute to the genetic architecture of this species, suggesting the occurrence of wide-range larval dispersal.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.