基于有限元模拟的玻璃模压机主曲线计算方法

Q3 Engineering
Zhiguo Zhang, Yuxuan Sun
{"title":"基于有限元模拟的玻璃模压机主曲线计算方法","authors":"Zhiguo Zhang, Yuxuan Sun","doi":"10.1504/ijnm.2020.10027475","DOIUrl":null,"url":null,"abstract":"A new approach is proposed to calculate the master curve (MC) of glass. It can solve the problem: when the temperature is higher than Tt,l (defined later), the measured shear relaxation modulus cannot describe the mechanical response of the annealing stage during glass moulding press (GMP) through the thermal rheological simple (TRS) theory. Based on the temperature dependent Yang's modulus and TRS theory, the MC with a reference temperature less than Tt,l is calculated by an iterative process. In order to verify the suitability of MC at high temperature, the MC and shear relaxation moduli are used in the finite element (FE) simulation at the isothermal compression stage. Similar von Mises stresses are shown and the usability of the MC at moulding temperature is proved by the simulation results. In order to predict residual stress within the formed glass lens, the MC is used to conduct FE simulation for the whole GMP process.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to calculate master curve for glass moulding press based on finite element simulation\",\"authors\":\"Zhiguo Zhang, Yuxuan Sun\",\"doi\":\"10.1504/ijnm.2020.10027475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach is proposed to calculate the master curve (MC) of glass. It can solve the problem: when the temperature is higher than Tt,l (defined later), the measured shear relaxation modulus cannot describe the mechanical response of the annealing stage during glass moulding press (GMP) through the thermal rheological simple (TRS) theory. Based on the temperature dependent Yang's modulus and TRS theory, the MC with a reference temperature less than Tt,l is calculated by an iterative process. In order to verify the suitability of MC at high temperature, the MC and shear relaxation moduli are used in the finite element (FE) simulation at the isothermal compression stage. Similar von Mises stresses are shown and the usability of the MC at moulding temperature is proved by the simulation results. In order to predict residual stress within the formed glass lens, the MC is used to conduct FE simulation for the whole GMP process.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijnm.2020.10027475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnm.2020.10027475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种计算玻璃主曲线的新方法。它可以解决这样的问题:当温度高于Tt,l(稍后定义)时,测量的剪切松弛模量不能通过热流变简单理论(TRS)来描述玻璃模压(GMP)过程中退火阶段的机械响应。基于温度相关的杨氏模量和TRS理论,通过迭代过程计算了参考温度小于Tt,l的MC。为了验证MC在高温下的适用性,在等温压缩阶段的有限元模拟中使用了MC和剪切松弛模量。模拟结果表明了类似的von Mises应力,并证明了MC在成型温度下的可用性。为了预测成型玻璃透镜内的残余应力,使用MC对整个GMP过程进行有限元模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to calculate master curve for glass moulding press based on finite element simulation
A new approach is proposed to calculate the master curve (MC) of glass. It can solve the problem: when the temperature is higher than Tt,l (defined later), the measured shear relaxation modulus cannot describe the mechanical response of the annealing stage during glass moulding press (GMP) through the thermal rheological simple (TRS) theory. Based on the temperature dependent Yang's modulus and TRS theory, the MC with a reference temperature less than Tt,l is calculated by an iterative process. In order to verify the suitability of MC at high temperature, the MC and shear relaxation moduli are used in the finite element (FE) simulation at the isothermal compression stage. Similar von Mises stresses are shown and the usability of the MC at moulding temperature is proved by the simulation results. In order to predict residual stress within the formed glass lens, the MC is used to conduct FE simulation for the whole GMP process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信