{"title":"交换环上模的Baer子模","authors":"Adam Anebri, Hwankoo Kim, N. Mahdou","doi":"10.24330/ieja.1252741","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring and $M$ be an $R$-module. A submodule $N$ of $M$ is called a d-submodule $($resp., an fd-submodule$)$ if $\\ann_R(m)\\subseteq \\ann_R(m')$ $($resp., $\\ann_R(F)\\subseteq \\ann_R(m'))$ for some $m\\in N$ $($resp., finite subset $F\\subseteq N)$ and $m'\\in M$ implies that $m'\\in N.$ Many examples, characterizations, and properties of these submodules are given. Moreover, we use them to characterize modules satisfying Property T, reduced modules, and von Neumann regular modules.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baer submodules of modules over commutative rings\",\"authors\":\"Adam Anebri, Hwankoo Kim, N. Mahdou\",\"doi\":\"10.24330/ieja.1252741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring and $M$ be an $R$-module. A submodule $N$ of $M$ is called a d-submodule $($resp., an fd-submodule$)$ if $\\\\ann_R(m)\\\\subseteq \\\\ann_R(m')$ $($resp., $\\\\ann_R(F)\\\\subseteq \\\\ann_R(m'))$ for some $m\\\\in N$ $($resp., finite subset $F\\\\subseteq N)$ and $m'\\\\in M$ implies that $m'\\\\in N.$ Many examples, characterizations, and properties of these submodules are given. Moreover, we use them to characterize modules satisfying Property T, reduced modules, and von Neumann regular modules.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1252741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1252741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $R$ be a commutative ring and $M$ be an $R$-module. A submodule $N$ of $M$ is called a d-submodule $($resp., an fd-submodule$)$ if $\ann_R(m)\subseteq \ann_R(m')$ $($resp., $\ann_R(F)\subseteq \ann_R(m'))$ for some $m\in N$ $($resp., finite subset $F\subseteq N)$ and $m'\in M$ implies that $m'\in N.$ Many examples, characterizations, and properties of these submodules are given. Moreover, we use them to characterize modules satisfying Property T, reduced modules, and von Neumann regular modules.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.