Xiao-feng Han, Wen-hua Sun, Shujing Wang, Xiao-lin Lu
{"title":"二价阳离子诱导细胞膜融合的和频光谱研究","authors":"Xiao-feng Han, Wen-hua Sun, Shujing Wang, Xiao-lin Lu","doi":"10.1063/1674-0068/cjcp2110213","DOIUrl":null,"url":null,"abstract":"Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of divalent cations to the charged lipids, thus leading to the cell membrane fusion. How-ever, the elaborate mechanism of cell membrane fusion induced by divalent cations is still needed to be elucidated. Here, surface/interface sensitive sum frequency generation vibrational spectroscopy (SFG-VS) and dynamic light scattering (DLS) were applied in this research to study the responses of phospholipid monolayer to the exposure of divalent metal ions i.e. Ca2+ and Mg2+. According to the particle size distribution results measured by DLS experiments, it was found that Ca2+ could induce inter-vesicular fusion while Mg2+ could not. An octadecyltrichlorosilane self-assembled monolayer (OTS SAM)-lipid monolayer system was designed to model the cell membrane for the SFG-VS experiment. Ca2+ could interact with the lipid PO2− head groups more strongly, resulting in cell membrane fusion more easily, in comparison with Mg2+. No specific interaction between the two metal cations and the C=O groups was observed. However, the C=O orientations changed more after Ca2+-PO2− binding than Mg2+ mediation on lipid monolayer. Meanwhile, Ca2+ could induce dehydration of the lipids (which should be related to the strong Ca2+-PO2− interaction), leading to the reduced hindrance for cell membrane fusion.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sum frequency spectroscopy studies on cell membrane fusion induced by divalent cations\",\"authors\":\"Xiao-feng Han, Wen-hua Sun, Shujing Wang, Xiao-lin Lu\",\"doi\":\"10.1063/1674-0068/cjcp2110213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of divalent cations to the charged lipids, thus leading to the cell membrane fusion. How-ever, the elaborate mechanism of cell membrane fusion induced by divalent cations is still needed to be elucidated. Here, surface/interface sensitive sum frequency generation vibrational spectroscopy (SFG-VS) and dynamic light scattering (DLS) were applied in this research to study the responses of phospholipid monolayer to the exposure of divalent metal ions i.e. Ca2+ and Mg2+. According to the particle size distribution results measured by DLS experiments, it was found that Ca2+ could induce inter-vesicular fusion while Mg2+ could not. An octadecyltrichlorosilane self-assembled monolayer (OTS SAM)-lipid monolayer system was designed to model the cell membrane for the SFG-VS experiment. Ca2+ could interact with the lipid PO2− head groups more strongly, resulting in cell membrane fusion more easily, in comparison with Mg2+. No specific interaction between the two metal cations and the C=O groups was observed. However, the C=O orientations changed more after Ca2+-PO2− binding than Mg2+ mediation on lipid monolayer. Meanwhile, Ca2+ could induce dehydration of the lipids (which should be related to the strong Ca2+-PO2− interaction), leading to the reduced hindrance for cell membrane fusion.\",\"PeriodicalId\":10036,\"journal\":{\"name\":\"Chinese Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/1674-0068/cjcp2110213\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2110213","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Sum frequency spectroscopy studies on cell membrane fusion induced by divalent cations
Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of divalent cations to the charged lipids, thus leading to the cell membrane fusion. How-ever, the elaborate mechanism of cell membrane fusion induced by divalent cations is still needed to be elucidated. Here, surface/interface sensitive sum frequency generation vibrational spectroscopy (SFG-VS) and dynamic light scattering (DLS) were applied in this research to study the responses of phospholipid monolayer to the exposure of divalent metal ions i.e. Ca2+ and Mg2+. According to the particle size distribution results measured by DLS experiments, it was found that Ca2+ could induce inter-vesicular fusion while Mg2+ could not. An octadecyltrichlorosilane self-assembled monolayer (OTS SAM)-lipid monolayer system was designed to model the cell membrane for the SFG-VS experiment. Ca2+ could interact with the lipid PO2− head groups more strongly, resulting in cell membrane fusion more easily, in comparison with Mg2+. No specific interaction between the two metal cations and the C=O groups was observed. However, the C=O orientations changed more after Ca2+-PO2− binding than Mg2+ mediation on lipid monolayer. Meanwhile, Ca2+ could induce dehydration of the lipids (which should be related to the strong Ca2+-PO2− interaction), leading to the reduced hindrance for cell membrane fusion.
期刊介绍:
Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following:
Theoretical Methods, Algorithms, Statistical and Quantum Chemistry
Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry
Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes
Surfaces, Interfaces, Single Molecules, Materials and Nanosciences
Polymers, Biopolymers, and Complex Systems
Other related topics