固定式加热装置系统与内燃机燃烧过程及排放特性的比较与实验研究

Q2 Engineering
G. Szabados, Péter Nagy, I. Zsoldos, J. Rohde-Brandenburger
{"title":"固定式加热装置系统与内燃机燃烧过程及排放特性的比较与实验研究","authors":"G. Szabados, Péter Nagy, I. Zsoldos, J. Rohde-Brandenburger","doi":"10.3311/pptr.18751","DOIUrl":null,"url":null,"abstract":"Stationary heating devices can be used to warm up the coolant of an internal combustion engine or the cabin air of a vehicle. This kind of heat engine transforms the chemical energy content of liquid fuels into heat energy. The combustion process and the emission of such a device is in focus in this study, which would be the first part in a greater project in the field. Therefore, some relevant parameters have been established. Relevant cycles have been chosen for the kinds of heat engines. It means a normal mode cycle for the stationary device and a WLTC cycle in the case of the direct injection gasoline engine. Fuel used was the same for both. This heat transfer process is such, that the combustion seems to be quite simple and rough in the stationary device compared to that of in internal combustion engine. This means an inhomogenous combustion with non-premixed flame at a low combustion temperature. This situation affects the emission characteristic accordingly, so causes low NOx and relatively high particle relevant emission comes out from the device. As far as the device's particle relevant emission is concerned it would be suitable for further investigation described at the end of the article.","PeriodicalId":39536,"journal":{"name":"Periodica Polytechnica Transportation Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing the Combustion Process and the Emission Characteristic of a Stationary Heating Device System and an Internal Combustion Engine with Experimental Investigation\",\"authors\":\"G. Szabados, Péter Nagy, I. Zsoldos, J. Rohde-Brandenburger\",\"doi\":\"10.3311/pptr.18751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stationary heating devices can be used to warm up the coolant of an internal combustion engine or the cabin air of a vehicle. This kind of heat engine transforms the chemical energy content of liquid fuels into heat energy. The combustion process and the emission of such a device is in focus in this study, which would be the first part in a greater project in the field. Therefore, some relevant parameters have been established. Relevant cycles have been chosen for the kinds of heat engines. It means a normal mode cycle for the stationary device and a WLTC cycle in the case of the direct injection gasoline engine. Fuel used was the same for both. This heat transfer process is such, that the combustion seems to be quite simple and rough in the stationary device compared to that of in internal combustion engine. This means an inhomogenous combustion with non-premixed flame at a low combustion temperature. This situation affects the emission characteristic accordingly, so causes low NOx and relatively high particle relevant emission comes out from the device. As far as the device's particle relevant emission is concerned it would be suitable for further investigation described at the end of the article.\",\"PeriodicalId\":39536,\"journal\":{\"name\":\"Periodica Polytechnica Transportation Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Transportation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/pptr.18751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/pptr.18751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

固定式加热装置可用于加热内燃机的冷却液或车辆的车厢空气。这种热机将液体燃料中的化学能转化为热能。这种装置的燃烧过程和排放是本研究的重点,这将是该领域更大项目的第一部分。因此,已经建立了一些相关的参数。已经为各种热力发动机选择了相关的循环。这意味着固定装置的正常模式循环和直喷汽油发动机的WLTC循环。两者使用的燃料相同。这种热传递过程是这样的,与内燃机相比,固定装置中的燃烧似乎非常简单和粗糙。这意味着在低燃烧温度下具有非预混火焰的不均匀燃烧。这种情况相应地影响了排放特性,从而导致低NOx和相对较高的颗粒相关排放从装置中出来。就该设备的颗粒相关发射而言,它将适合于文章末尾描述的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing the Combustion Process and the Emission Characteristic of a Stationary Heating Device System and an Internal Combustion Engine with Experimental Investigation
Stationary heating devices can be used to warm up the coolant of an internal combustion engine or the cabin air of a vehicle. This kind of heat engine transforms the chemical energy content of liquid fuels into heat energy. The combustion process and the emission of such a device is in focus in this study, which would be the first part in a greater project in the field. Therefore, some relevant parameters have been established. Relevant cycles have been chosen for the kinds of heat engines. It means a normal mode cycle for the stationary device and a WLTC cycle in the case of the direct injection gasoline engine. Fuel used was the same for both. This heat transfer process is such, that the combustion seems to be quite simple and rough in the stationary device compared to that of in internal combustion engine. This means an inhomogenous combustion with non-premixed flame at a low combustion temperature. This situation affects the emission characteristic accordingly, so causes low NOx and relatively high particle relevant emission comes out from the device. As far as the device's particle relevant emission is concerned it would be suitable for further investigation described at the end of the article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica Transportation Engineering
Periodica Polytechnica Transportation Engineering Engineering-Automotive Engineering
CiteScore
2.60
自引率
0.00%
发文量
47
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信