Auslander深度不等式的一个推广

Pub Date : 2021-08-18 DOI:10.11650/tjm/220501
Olgur Celikbas, U. Le, H. Matsui
{"title":"Auslander深度不等式的一个推广","authors":"Olgur Celikbas, U. Le, H. Matsui","doi":"10.11650/tjm/220501","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a depth inequality of Auslander which holds for finitely generated Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a depth inequality can be extended for $n$-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically free. Furthermore, in the appendix, we use Dao's eta function and determine new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Extension of a Depth Inequality of Auslander\",\"authors\":\"Olgur Celikbas, U. Le, H. Matsui\",\"doi\":\"10.11650/tjm/220501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a depth inequality of Auslander which holds for finitely generated Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a depth inequality can be extended for $n$-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically free. Furthermore, in the appendix, we use Dao's eta function and determine new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了Auslander的一个深度不等式,它适用于交换Noetherian局部环上的有限生成Tor刚性模。我们提出了这样一个深度不等式是否可以推广到$n$-Tor刚性模的问题,并得到了一般自由的2-Tor刚性模的肯定答案。此外,在附录中,我们使用Dao的eta函数,确定了超曲面上的Tor刚性模的新类,这些新类是非分枝正则局部环的商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An Extension of a Depth Inequality of Auslander
In this paper, we consider a depth inequality of Auslander which holds for finitely generated Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a depth inequality can be extended for $n$-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically free. Furthermore, in the appendix, we use Dao's eta function and determine new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信