{"title":"Auslander深度不等式的一个推广","authors":"Olgur Celikbas, U. Le, H. Matsui","doi":"10.11650/tjm/220501","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a depth inequality of Auslander which holds for finitely generated Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a depth inequality can be extended for $n$-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically free. Furthermore, in the appendix, we use Dao's eta function and determine new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Extension of a Depth Inequality of Auslander\",\"authors\":\"Olgur Celikbas, U. Le, H. Matsui\",\"doi\":\"10.11650/tjm/220501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a depth inequality of Auslander which holds for finitely generated Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a depth inequality can be extended for $n$-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically free. Furthermore, in the appendix, we use Dao's eta function and determine new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we consider a depth inequality of Auslander which holds for finitely generated Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a depth inequality can be extended for $n$-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically free. Furthermore, in the appendix, we use Dao's eta function and determine new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.