{"title":"非线性椭圆型系统正整体径向解的存在性","authors":"S. Padhi, J. Dix","doi":"10.58997/ejde.sp.02.p1","DOIUrl":null,"url":null,"abstract":"In this article we obtain global positive and radially symmetric solutions to the system of nonlinear elliptic equations $$ \\operatorname{div}\\big(\\phi_j(|\\nabla u|) \\nabla u\\big) +a_j(x)\\phi_j(|\\nabla u|) |\\nabla u| =p_j(x)f_j(u_1(x),\\dots,u_k(x))\\,, $$ and in particular to Laplace's equation $$ \\Delta u_j(x) =p_j(x)f_j(u_1(x),\\dots,u_k(x))\\,, $$ where \\(j=1,\\dots,k\\), \\( x\\in\\mathbb{R}^N\\), \\(N\\geq 3\\), \\(\\Delta \\) is the Laplacian operator, and \\(\\nabla\\) is the gradient. Also we state conditions for solutions to be bounded, and to be unbounded. With an example we illustrate our results.\nSee also https://ejde.math.txstate.edu/special/02/p1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive global radial solutions to nonlinear elliptic systems\",\"authors\":\"S. Padhi, J. Dix\",\"doi\":\"10.58997/ejde.sp.02.p1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we obtain global positive and radially symmetric solutions to the system of nonlinear elliptic equations $$ \\\\operatorname{div}\\\\big(\\\\phi_j(|\\\\nabla u|) \\\\nabla u\\\\big) +a_j(x)\\\\phi_j(|\\\\nabla u|) |\\\\nabla u| =p_j(x)f_j(u_1(x),\\\\dots,u_k(x))\\\\,, $$ and in particular to Laplace's equation $$ \\\\Delta u_j(x) =p_j(x)f_j(u_1(x),\\\\dots,u_k(x))\\\\,, $$ where \\\\(j=1,\\\\dots,k\\\\), \\\\( x\\\\in\\\\mathbb{R}^N\\\\), \\\\(N\\\\geq 3\\\\), \\\\(\\\\Delta \\\\) is the Laplacian operator, and \\\\(\\\\nabla\\\\) is the gradient. Also we state conditions for solutions to be bounded, and to be unbounded. With an example we illustrate our results.\\nSee also https://ejde.math.txstate.edu/special/02/p1/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.sp.02.p1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.p1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们得到了非线性椭圆方程组$$\operatorname{div}\big(\phi_j(|\nabla u|)\nabla u \big)+a_j(x)\phi_j(|\napla u|$$,其中\(j=1,\dots,k\),\(x\In\mathbb{R}^N\),\(N\geq3\),\(\Delta\)是拉普拉斯算子,\(\nabla\)是梯度。此外,我们还陈述了解有界和无界的条件。我们用一个例子来说明我们的结果。另请参阅https://ejde.math.txstate.edu/special/02/p1/abstr.html
Existence of positive global radial solutions to nonlinear elliptic systems
In this article we obtain global positive and radially symmetric solutions to the system of nonlinear elliptic equations $$ \operatorname{div}\big(\phi_j(|\nabla u|) \nabla u\big) +a_j(x)\phi_j(|\nabla u|) |\nabla u| =p_j(x)f_j(u_1(x),\dots,u_k(x))\,, $$ and in particular to Laplace's equation $$ \Delta u_j(x) =p_j(x)f_j(u_1(x),\dots,u_k(x))\,, $$ where \(j=1,\dots,k\), \( x\in\mathbb{R}^N\), \(N\geq 3\), \(\Delta \) is the Laplacian operator, and \(\nabla\) is the gradient. Also we state conditions for solutions to be bounded, and to be unbounded. With an example we illustrate our results.
See also https://ejde.math.txstate.edu/special/02/p1/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.