用于表面生物改性的超薄聚硫硅氧烷膜的电化学分析

IF 2.3 Q3 ELECTROCHEMISTRY
Hao-Chun Chiang, R. Levicky
{"title":"用于表面生物改性的超薄聚硫硅氧烷膜的电化学分析","authors":"Hao-Chun Chiang, R. Levicky","doi":"10.1155/2018/4705031","DOIUrl":null,"url":null,"abstract":"The ability of different crosslinkers to crosslink nanometer thick films of the polymer poly(mercaptopropyl)methylsiloxane (PMPMS), thus stabilizing these films on solid supports, was investigated. The four crosslinkers included 1,11-bismaleimidotriethyleneglycol (BM(PEG)3), tris-(2-maleimidoethyl)amine (TMEA), bismaleimidohexane (BMH), and 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BMDPM). PMPMS films treated with the four crosslinkers were compared in the effectiveness of achieved crosslinking, continuity and stability of the films to rearrangement at elevated temperatures, and modification with single-stranded DNA. The results of electrochemical analyses show that more hydrophilic crosslinkers had difficulty reacting fully with PMPMS thiols, even in these nanometer thin layers. This observation highlights the critical importance of selecting crosslinkers that are chemically compatible. Optimal selection of crosslinker yielded films in which the polymer film was largely incapable of rearranging, even at elevated temperatures, yielding reproducible and stable layers. These results validate use of these supports for applications such as monitoring thermal denaturation of immobilized DNA duplexes.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4705031","citationCount":"1","resultStr":"{\"title\":\"Electrochemical Analysis of Ultrathin Polythiolsiloxane Films for Surface Biomodification\",\"authors\":\"Hao-Chun Chiang, R. Levicky\",\"doi\":\"10.1155/2018/4705031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of different crosslinkers to crosslink nanometer thick films of the polymer poly(mercaptopropyl)methylsiloxane (PMPMS), thus stabilizing these films on solid supports, was investigated. The four crosslinkers included 1,11-bismaleimidotriethyleneglycol (BM(PEG)3), tris-(2-maleimidoethyl)amine (TMEA), bismaleimidohexane (BMH), and 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BMDPM). PMPMS films treated with the four crosslinkers were compared in the effectiveness of achieved crosslinking, continuity and stability of the films to rearrangement at elevated temperatures, and modification with single-stranded DNA. The results of electrochemical analyses show that more hydrophilic crosslinkers had difficulty reacting fully with PMPMS thiols, even in these nanometer thin layers. This observation highlights the critical importance of selecting crosslinkers that are chemically compatible. Optimal selection of crosslinker yielded films in which the polymer film was largely incapable of rearranging, even at elevated temperatures, yielding reproducible and stable layers. These results validate use of these supports for applications such as monitoring thermal denaturation of immobilized DNA duplexes.\",\"PeriodicalId\":13933,\"journal\":{\"name\":\"International journal of electrochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/4705031\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/4705031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/4705031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

研究了不同交联剂对聚合物聚巯基丙基甲基硅氧烷(PMPMS)纳米厚膜的交联能力,从而使这些薄膜在固体载体上稳定下来。四种交联剂包括1,11-二马来酰亚胺三甘醇(BM(PEG)3)、三-(2-马来酰亚胺乙基)胺(TMEA)、双马来酰亚胺己烷(BMH)和1,1'-(亚甲基二-4,1-亚苯基)双马来亚胺(BMDPM)。比较了四种交联剂处理的PMPMS膜的交联效果、膜在高温下重排的连续性和稳定性以及单链DNA修饰。电化学分析结果表明,即使在这些纳米薄层中,更亲水的交联剂也难以与PMPMS硫醇完全反应。这一观察结果强调了选择化学相容的交联剂的关键重要性。交联剂的最佳选择产生了聚合物膜基本上不能重排的膜,即使在高温下,也能产生可重复和稳定的层。这些结果验证了这些支持物在诸如监测固定化DNA双链体的热变性等应用中的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical Analysis of Ultrathin Polythiolsiloxane Films for Surface Biomodification
The ability of different crosslinkers to crosslink nanometer thick films of the polymer poly(mercaptopropyl)methylsiloxane (PMPMS), thus stabilizing these films on solid supports, was investigated. The four crosslinkers included 1,11-bismaleimidotriethyleneglycol (BM(PEG)3), tris-(2-maleimidoethyl)amine (TMEA), bismaleimidohexane (BMH), and 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BMDPM). PMPMS films treated with the four crosslinkers were compared in the effectiveness of achieved crosslinking, continuity and stability of the films to rearrangement at elevated temperatures, and modification with single-stranded DNA. The results of electrochemical analyses show that more hydrophilic crosslinkers had difficulty reacting fully with PMPMS thiols, even in these nanometer thin layers. This observation highlights the critical importance of selecting crosslinkers that are chemically compatible. Optimal selection of crosslinker yielded films in which the polymer film was largely incapable of rearranging, even at elevated temperatures, yielding reproducible and stable layers. These results validate use of these supports for applications such as monitoring thermal denaturation of immobilized DNA duplexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信