基于床层粗糙度的新的取深限制预测曲线

IF 1.9 3区 工程技术 Q3 ENGINEERING, CIVIL
S. Pascolo, M. Petti, S. Bosa
{"title":"基于床层粗糙度的新的取深限制预测曲线","authors":"S. Pascolo, M. Petti, S. Bosa","doi":"10.1080/21664250.2023.2217992","DOIUrl":null,"url":null,"abstract":"ABSTRACT Predicting wind waves within confined and shallow basins is very important, given the decisive role they play in the resuspension mechanisms of sediments and nutrients from the bottom, on which the main morphological and environmental changes depend. Pascolo, Petti, and Bosa (2019) proposed a set of wave forecasting curves for fully developed conditions in finite depth, which consider the bottom roughness as an additional variable, since it plays a fundamental role in the wave energy dissipation during the generation process. The present study incorporates and integrates the results previously obtained by Pascolo, Petti, and Bosa (2019) and provides the growth curves in the complete form, taking into account also the limitation on fetch. A numerical approach on a simplified domain has been adopted and statistical analyses on the fit of the curves to numerical results have been performed. The new set of equations confirms the variability of the wave heights and periods as a function of the bottom conditions, which can change due to the presence of bedforms, vegetation, or particle size differences. Applications at different conditions of depth, fetch, and roughness have been analyzed, in order to confirm the validity of the new growth curves.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":"65 1","pages":"394 - 417"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Fetch- and Depth-Limited Forecasting Curves Depending on Bed Roughness\",\"authors\":\"S. Pascolo, M. Petti, S. Bosa\",\"doi\":\"10.1080/21664250.2023.2217992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Predicting wind waves within confined and shallow basins is very important, given the decisive role they play in the resuspension mechanisms of sediments and nutrients from the bottom, on which the main morphological and environmental changes depend. Pascolo, Petti, and Bosa (2019) proposed a set of wave forecasting curves for fully developed conditions in finite depth, which consider the bottom roughness as an additional variable, since it plays a fundamental role in the wave energy dissipation during the generation process. The present study incorporates and integrates the results previously obtained by Pascolo, Petti, and Bosa (2019) and provides the growth curves in the complete form, taking into account also the limitation on fetch. A numerical approach on a simplified domain has been adopted and statistical analyses on the fit of the curves to numerical results have been performed. The new set of equations confirms the variability of the wave heights and periods as a function of the bottom conditions, which can change due to the presence of bedforms, vegetation, or particle size differences. Applications at different conditions of depth, fetch, and roughness have been analyzed, in order to confirm the validity of the new growth curves.\",\"PeriodicalId\":50673,\"journal\":{\"name\":\"Coastal Engineering Journal\",\"volume\":\"65 1\",\"pages\":\"394 - 417\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21664250.2023.2217992\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2217992","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要:考虑到风浪在沉积物和营养物质从底部再悬浮机制中起着决定性作用,预测受限和浅层盆地内的风浪是非常重要的,而沉积物和营养物的主要形态和环境变化取决于这些机制。Pascolo、Petti和Bosa(2019)提出了一组适用于有限深度内完全发展条件的波浪预测曲线,该曲线将底部粗糙度视为一个附加变量,因为它在生成过程中对波浪能量耗散起着根本作用。本研究结合并整合了Pascolo、Petti和Bosa(2019)之前获得的结果,并提供了完整形式的生长曲线,同时考虑了提取的限制。采用了简化域上的数值方法,并对曲线与数值结果的拟合进行了统计分析。新的一组方程证实了波浪高度和周期的变化是底部条件的函数,底部条件可能会因床型、植被或颗粒大小差异的存在而变化。分析了在不同深度、提取和粗糙度条件下的应用,以证实新生长曲线的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Fetch- and Depth-Limited Forecasting Curves Depending on Bed Roughness
ABSTRACT Predicting wind waves within confined and shallow basins is very important, given the decisive role they play in the resuspension mechanisms of sediments and nutrients from the bottom, on which the main morphological and environmental changes depend. Pascolo, Petti, and Bosa (2019) proposed a set of wave forecasting curves for fully developed conditions in finite depth, which consider the bottom roughness as an additional variable, since it plays a fundamental role in the wave energy dissipation during the generation process. The present study incorporates and integrates the results previously obtained by Pascolo, Petti, and Bosa (2019) and provides the growth curves in the complete form, taking into account also the limitation on fetch. A numerical approach on a simplified domain has been adopted and statistical analyses on the fit of the curves to numerical results have been performed. The new set of equations confirms the variability of the wave heights and periods as a function of the bottom conditions, which can change due to the presence of bedforms, vegetation, or particle size differences. Applications at different conditions of depth, fetch, and roughness have been analyzed, in order to confirm the validity of the new growth curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering Journal
Coastal Engineering Journal 工程技术-工程:大洋
CiteScore
4.60
自引率
8.30%
发文量
0
审稿时长
7.5 months
期刊介绍: Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信