一类置换四项的确定

IF 1.5 1区 数学 Q1 MATHEMATICS
Zhiguo Ding, Michael E. Zieve
{"title":"一类置换四项的确定","authors":"Zhiguo Ding, Michael E. Zieve","doi":"10.1112/plms.12540","DOIUrl":null,"url":null,"abstract":"We determine all permutation polynomials over Fq2$\\mathbb {F}_{q^2}$ of the form XrA(Xq−1)$X^r A(X^{q-1})$ where, for some Q$Q$ that is a power of the characteristic of Fq$\\mathbb {F}_q$ , we have r≡Q+1(modq+1)$r\\equiv Q+1\\pmod {q+1}$ and all terms of A(X)$A(X)$ have degrees in {0,1,Q,Q+1}$\\lbrace 0,1,Q,Q+1\\rbrace$ . We use this classification to resolve eight conjectures and open problems from the literature, and we list 77 recent results from the literature that follow immediately from the simplest special cases of our result. Our proof makes a novel use of geometric techniques in a situation where they previously did not seem applicable, namely to understand the arithmetic of high‐degree rational functions over small finite fields, despite the fact that in this situation the Weil bounds do not provide useful information.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Determination of a class of permutation quadrinomials\",\"authors\":\"Zhiguo Ding, Michael E. Zieve\",\"doi\":\"10.1112/plms.12540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all permutation polynomials over Fq2$\\\\mathbb {F}_{q^2}$ of the form XrA(Xq−1)$X^r A(X^{q-1})$ where, for some Q$Q$ that is a power of the characteristic of Fq$\\\\mathbb {F}_q$ , we have r≡Q+1(modq+1)$r\\\\equiv Q+1\\\\pmod {q+1}$ and all terms of A(X)$A(X)$ have degrees in {0,1,Q,Q+1}$\\\\lbrace 0,1,Q,Q+1\\\\rbrace$ . We use this classification to resolve eight conjectures and open problems from the literature, and we list 77 recent results from the literature that follow immediately from the simplest special cases of our result. Our proof makes a novel use of geometric techniques in a situation where they previously did not seem applicable, namely to understand the arithmetic of high‐degree rational functions over small finite fields, despite the fact that in this situation the Weil bounds do not provide useful information.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12540\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12540","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们确定Fq2$\mathbb上的所有置换多项式{F}_形式为XrA(Xq−1)$X^rA(X^{q-1})$的{q^2}$其中,对于某些q$q$,这是Fq$\mathbb的特征的幂{F}_q$,我们有r Select Q+1(modq+1)$r\equiv Q+1\pmod{Q+1}$,并且A(X)$的所有项在{0,1,Q,Q+1}$\l种族0,1,Q,Q+1\l种族$中都有度。我们使用这种分类来解决文献中的八个猜想和悬而未决的问题,并列出了文献中的77个最新结果,这些结果紧跟着我们结果中最简单的特例。我们的证明在几何技术以前似乎不适用的情况下新颖地使用了几何技术,即理解小有限域上的高阶有理函数的算术,尽管在这种情况下Weil界不能提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of a class of permutation quadrinomials
We determine all permutation polynomials over Fq2$\mathbb {F}_{q^2}$ of the form XrA(Xq−1)$X^r A(X^{q-1})$ where, for some Q$Q$ that is a power of the characteristic of Fq$\mathbb {F}_q$ , we have r≡Q+1(modq+1)$r\equiv Q+1\pmod {q+1}$ and all terms of A(X)$A(X)$ have degrees in {0,1,Q,Q+1}$\lbrace 0,1,Q,Q+1\rbrace$ . We use this classification to resolve eight conjectures and open problems from the literature, and we list 77 recent results from the literature that follow immediately from the simplest special cases of our result. Our proof makes a novel use of geometric techniques in a situation where they previously did not seem applicable, namely to understand the arithmetic of high‐degree rational functions over small finite fields, despite the fact that in this situation the Weil bounds do not provide useful information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信