多类有限状态平均场系统的大时间行为

Q1 Mathematics
D. Dawson, Ahmed Sid-Ali, Yiqiang Q. Zhao
{"title":"多类有限状态平均场系统的大时间行为","authors":"D. Dawson, Ahmed Sid-Ali, Yiqiang Q. Zhao","doi":"10.1287/stsy.2022.0100","DOIUrl":null,"url":null,"abstract":"We study in this paper large-time asymptotics of the empirical vector associated with a family of finite-state mean-field systems with multiclasses. The empirical vector is composed of local empirical measures characterizing the different classes within the system. As the number of particles in the system goes to infinity, the empirical vector process converges toward the solution to a McKean-Vlasov system. First, we investigate the large deviations principles of the invariant distribution from the limiting McKean-Vlasov system. Then, we examine the metastable phenomena arising at a large scale and large time. Finally, we estimate the rate of convergence of the empirical vector process to its invariant measure. Given the local homogeneity in the system, our results are established in a product space.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large-Time Behavior of Finite-State Mean-Field Systems With Multiclasses\",\"authors\":\"D. Dawson, Ahmed Sid-Ali, Yiqiang Q. Zhao\",\"doi\":\"10.1287/stsy.2022.0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study in this paper large-time asymptotics of the empirical vector associated with a family of finite-state mean-field systems with multiclasses. The empirical vector is composed of local empirical measures characterizing the different classes within the system. As the number of particles in the system goes to infinity, the empirical vector process converges toward the solution to a McKean-Vlasov system. First, we investigate the large deviations principles of the invariant distribution from the limiting McKean-Vlasov system. Then, we examine the metastable phenomena arising at a large scale and large time. Finally, we estimate the rate of convergence of the empirical vector process to its invariant measure. Given the local homogeneity in the system, our results are established in a product space.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2022.0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2022.0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一类多类有限状态平均场系统的经验向量的大时间渐近性。经验向量由表征系统内不同类别的局部经验度量组成。当系统中粒子的数量达到无穷大时,经验向量过程收敛于McKean Vlasov系统的解。首先,我们研究了极限McKean-Vlasov系统不变分布的大偏差原理。然后,我们研究了在大尺度、大时间内出现的亚稳态现象。最后,我们估计了经验向量过程对其不变测度的收敛速度。考虑到系统中的局部同质性,我们的结果是在乘积空间中建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Time Behavior of Finite-State Mean-Field Systems With Multiclasses
We study in this paper large-time asymptotics of the empirical vector associated with a family of finite-state mean-field systems with multiclasses. The empirical vector is composed of local empirical measures characterizing the different classes within the system. As the number of particles in the system goes to infinity, the empirical vector process converges toward the solution to a McKean-Vlasov system. First, we investigate the large deviations principles of the invariant distribution from the limiting McKean-Vlasov system. Then, we examine the metastable phenomena arising at a large scale and large time. Finally, we estimate the rate of convergence of the empirical vector process to its invariant measure. Given the local homogeneity in the system, our results are established in a product space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信