基于先验知识的A类不确定度贝叶斯评价方法的分析与比较

IF 0.1 Q4 INSTRUMENTS & INSTRUMENTATION
I. Lira
{"title":"基于先验知识的A类不确定度贝叶斯评价方法的分析与比较","authors":"I. Lira","doi":"10.24027/2306-7039.4.2022.276284","DOIUrl":null,"url":null,"abstract":"If a number of observations about a certain quantity may be assumed independent, drawn from a Gaussian distribution, Supplement 1 to the GUM recommends that the standard uncertainty associated with the quantity be obtained by a formula that is applied to more than three observations. Various articles have recently appeared proposing Bayesian methods to surmount this limitation. Some of these methods, which require prior knowledge about the quantity, are reviewed in this article.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and comparison of Bayesian methods for type A uncertainty evaluation with prior knowledge\",\"authors\":\"I. Lira\",\"doi\":\"10.24027/2306-7039.4.2022.276284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If a number of observations about a certain quantity may be assumed independent, drawn from a Gaussian distribution, Supplement 1 to the GUM recommends that the standard uncertainty associated with the quantity be obtained by a formula that is applied to more than three observations. Various articles have recently appeared proposing Bayesian methods to surmount this limitation. Some of these methods, which require prior knowledge about the quantity, are reviewed in this article.\",\"PeriodicalId\":40775,\"journal\":{\"name\":\"Ukrainian Metrological Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Metrological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24027/2306-7039.4.2022.276284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.4.2022.276284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

如果可以假设某个量的多个观测值是独立的,从高斯分布中得出,GUM补充1建议通过应用于三个以上观测值的公式来获得与该量相关的标准不确定度。最近出现了各种文章,提出了贝叶斯方法来克服这一限制。本文对其中一些方法进行了综述,这些方法需要事先了解数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and comparison of Bayesian methods for type A uncertainty evaluation with prior knowledge
If a number of observations about a certain quantity may be assumed independent, drawn from a Gaussian distribution, Supplement 1 to the GUM recommends that the standard uncertainty associated with the quantity be obtained by a formula that is applied to more than three observations. Various articles have recently appeared proposing Bayesian methods to surmount this limitation. Some of these methods, which require prior knowledge about the quantity, are reviewed in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Metrological Journal
Ukrainian Metrological Journal INSTRUMENTS & INSTRUMENTATION-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信