Zohreh Afsartala, M. Hadjighassem, S. Shirian, S. Ebrahimi‐Barough, Leyla Gholami, Fahad Hussain Mohammed, Mina Yaghoobi, Jafar ay
{"title":"两种水凝胶支架包裹脂肪组织间充质干细胞对脊髓损伤再生作用的比较","authors":"Zohreh Afsartala, M. Hadjighassem, S. Shirian, S. Ebrahimi‐Barough, Leyla Gholami, Fahad Hussain Mohammed, Mina Yaghoobi, Jafar ay","doi":"10.5812/ans.119170","DOIUrl":null,"url":null,"abstract":"Background: Spinal cord injury (SCI) is a severe neurological disease leading to poor quality of life. Objectives: The regenerative effect of adipose-derived mesenchymal stem cells (AD-MSCs) encapsulated into fibrin, and collagen hydrogel scaffolds on a rat model of SCI was investigated using clinical and histopathological examinations. Methods: A total of 18 adult male Wistar rats (250 - 300 g) were prepared and randomly divided into three equal groups, each with six rats, including the control or SCI group (SCI contusion model without treatment), SCI contusion model treated with AD-MSCs encapsulated in fibrin hydrogel, and SCI contusion model treated with AD-MSCs encapsulated in collagen hydrogel groups. Clinically, functional recovery or hindlimb locomotor activity was assessed using Basso, Beattie, and Bresnahan's (BBB) scoring system four weeks post-treatment. The rats were sacrificed at week four post-treatment, and their spinal cords were examined histopathologically. Results: Faster functional recovery indicated with hindlimb locomotor activity was seen in both treatment groups compared to the control group. Severe polio and leuko-myelomalacia associated with disruption of spinal cord structure were identified in the control group. Mild polio and leuko-myelomalacia associated with mild to moderate disruption of spinal cord structure were seen in the collagen hydrogel + AD-MSCs and fibrin hydrogel + AD-MSCs groups. Conclusions: AD-MSCs encapsulated into fibrin and collagen hydrogels, as two of the most promising ECM-based or natural scaffolds have the potential to be developed in neural tissue engineering (NTE), such as for the treatment of SCI.","PeriodicalId":43970,"journal":{"name":"Archives of Neuroscience","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the Regenerative Effect of Adipose Tissue Mesenchymal Stem Cell Encapsulated into Two Hydrogel Scaffolds on Spinal Cord Injury\",\"authors\":\"Zohreh Afsartala, M. Hadjighassem, S. Shirian, S. Ebrahimi‐Barough, Leyla Gholami, Fahad Hussain Mohammed, Mina Yaghoobi, Jafar ay\",\"doi\":\"10.5812/ans.119170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Spinal cord injury (SCI) is a severe neurological disease leading to poor quality of life. Objectives: The regenerative effect of adipose-derived mesenchymal stem cells (AD-MSCs) encapsulated into fibrin, and collagen hydrogel scaffolds on a rat model of SCI was investigated using clinical and histopathological examinations. Methods: A total of 18 adult male Wistar rats (250 - 300 g) were prepared and randomly divided into three equal groups, each with six rats, including the control or SCI group (SCI contusion model without treatment), SCI contusion model treated with AD-MSCs encapsulated in fibrin hydrogel, and SCI contusion model treated with AD-MSCs encapsulated in collagen hydrogel groups. Clinically, functional recovery or hindlimb locomotor activity was assessed using Basso, Beattie, and Bresnahan's (BBB) scoring system four weeks post-treatment. The rats were sacrificed at week four post-treatment, and their spinal cords were examined histopathologically. Results: Faster functional recovery indicated with hindlimb locomotor activity was seen in both treatment groups compared to the control group. Severe polio and leuko-myelomalacia associated with disruption of spinal cord structure were identified in the control group. Mild polio and leuko-myelomalacia associated with mild to moderate disruption of spinal cord structure were seen in the collagen hydrogel + AD-MSCs and fibrin hydrogel + AD-MSCs groups. Conclusions: AD-MSCs encapsulated into fibrin and collagen hydrogels, as two of the most promising ECM-based or natural scaffolds have the potential to be developed in neural tissue engineering (NTE), such as for the treatment of SCI.\",\"PeriodicalId\":43970,\"journal\":{\"name\":\"Archives of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/ans.119170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/ans.119170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Comparison of the Regenerative Effect of Adipose Tissue Mesenchymal Stem Cell Encapsulated into Two Hydrogel Scaffolds on Spinal Cord Injury
Background: Spinal cord injury (SCI) is a severe neurological disease leading to poor quality of life. Objectives: The regenerative effect of adipose-derived mesenchymal stem cells (AD-MSCs) encapsulated into fibrin, and collagen hydrogel scaffolds on a rat model of SCI was investigated using clinical and histopathological examinations. Methods: A total of 18 adult male Wistar rats (250 - 300 g) were prepared and randomly divided into three equal groups, each with six rats, including the control or SCI group (SCI contusion model without treatment), SCI contusion model treated with AD-MSCs encapsulated in fibrin hydrogel, and SCI contusion model treated with AD-MSCs encapsulated in collagen hydrogel groups. Clinically, functional recovery or hindlimb locomotor activity was assessed using Basso, Beattie, and Bresnahan's (BBB) scoring system four weeks post-treatment. The rats were sacrificed at week four post-treatment, and their spinal cords were examined histopathologically. Results: Faster functional recovery indicated with hindlimb locomotor activity was seen in both treatment groups compared to the control group. Severe polio and leuko-myelomalacia associated with disruption of spinal cord structure were identified in the control group. Mild polio and leuko-myelomalacia associated with mild to moderate disruption of spinal cord structure were seen in the collagen hydrogel + AD-MSCs and fibrin hydrogel + AD-MSCs groups. Conclusions: AD-MSCs encapsulated into fibrin and collagen hydrogels, as two of the most promising ECM-based or natural scaffolds have the potential to be developed in neural tissue engineering (NTE), such as for the treatment of SCI.
期刊介绍:
Archives of neuroscience is a clinical and basic journal which is informative to all practitioners like Neurosurgeons, Neurologists, Psychiatrists, Neuroscientists. It is the official journal of Brain and Spinal Injury Research Center. The Major theme of this journal is to follow the path of scientific collaboration, spontaneity, and goodwill for the future, by providing up-to-date knowledge for the readers. The journal aims at covering different fields, as the name implies, ranging from research in basic and clinical sciences to core topics such as patient care, education, procuring and correct utilization of resources and bringing to limelight the cherished goals of the institute in providing a standard care for the physically disabled patients. This quarterly journal offers a venue for our researchers and scientists to vent their innovative and constructive research works. The scope of the journal is as far wide as the universe as being declared by the name of the journal, but our aim is to pursue our sacred goals in providing a panacea for the intractable ailments, which leave a psychological element in the daily life of such patients. This authoritative clinical and basic journal was founded by Professor Madjid Samii in 2012.