弹性圆顶的Funularity:形状和厚度的耦合效应

IF 1.1 Q4 MECHANICS
F. Accornero, A. Carpinteri
{"title":"弹性圆顶的Funularity:形状和厚度的耦合效应","authors":"F. Accornero, A. Carpinteri","doi":"10.1515/cls-2021-0017","DOIUrl":null,"url":null,"abstract":"Abstract An historical overview is presented concerning the theory of shell structures and thin domes. Early conjectures proposed, among others, by French, German, and Russian Authors are discussed. Static and kinematic matrix operator equations are formulated explicitly in the case of shells of revolution and thin domes. It is realized how the static and kinematic matrix operators are one the ad-joint of the other, and, on the other hand, it can be rigorously demonstrated through the definition of stiffness matrix and the application of virtual work principle. In this context, any possible omission present in the previous approaches becomes evident. As regards thin shells of revolution (thin domes), the elastic problem results to be internally statically-determinate, in analogy to the case of curved beams, being characterized by a system of two equilibrium equations in two unknowns. Thus, the elastic solution can be obtained just based on the equilibrium equations and independently of the shape of the membrane itself. The same cannot be affirmed for the unidimensional elements without ‚exural stiffness (ropes). Generally speaking, the static problem of elastic domes is governed by two parameters, the constraint reactions being assumed to be tangential to meridians at the dome edges: the shallowness ratio and the thickness of the dome. On the other hand, when the dome thickness tends to zero, the funicularity emerges and prevails, independently of the shallowness ratio or the shape of the dome. When the thickness is finite, an optimal shape is demonstrated to exist, which minimizes the flexural regime if compared to the membrane one.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"181 - 187"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0017","citationCount":"1","resultStr":"{\"title\":\"Funicularity in elastic domes: Coupled effects of shape and thickness\",\"authors\":\"F. Accornero, A. Carpinteri\",\"doi\":\"10.1515/cls-2021-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An historical overview is presented concerning the theory of shell structures and thin domes. Early conjectures proposed, among others, by French, German, and Russian Authors are discussed. Static and kinematic matrix operator equations are formulated explicitly in the case of shells of revolution and thin domes. It is realized how the static and kinematic matrix operators are one the ad-joint of the other, and, on the other hand, it can be rigorously demonstrated through the definition of stiffness matrix and the application of virtual work principle. In this context, any possible omission present in the previous approaches becomes evident. As regards thin shells of revolution (thin domes), the elastic problem results to be internally statically-determinate, in analogy to the case of curved beams, being characterized by a system of two equilibrium equations in two unknowns. Thus, the elastic solution can be obtained just based on the equilibrium equations and independently of the shape of the membrane itself. The same cannot be affirmed for the unidimensional elements without ‚exural stiffness (ropes). Generally speaking, the static problem of elastic domes is governed by two parameters, the constraint reactions being assumed to be tangential to meridians at the dome edges: the shallowness ratio and the thickness of the dome. On the other hand, when the dome thickness tends to zero, the funicularity emerges and prevails, independently of the shallowness ratio or the shape of the dome. When the thickness is finite, an optimal shape is demonstrated to exist, which minimizes the flexural regime if compared to the membrane one.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"8 1\",\"pages\":\"181 - 187\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cls-2021-0017\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2021-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

文摘:对壳结构和薄穹顶理论进行了历史综述。讨论了法国、德国和俄罗斯作者提出的早期猜想。在旋转壳体和薄圆顶的情况下,明确地建立了静态和运动矩阵算子方程。通过刚度矩阵的定义和虚功原理的应用,实现了静态矩阵算子和运动矩阵算子是如何相互作用的,另一方面又可以得到严格的证明。在这种情况下,以前的方法中可能存在的任何遗漏都是显而易见的。关于旋转薄壁(薄圆顶),弹性问题的结果是内部静定的,类似于曲梁的情况,其特征是两个未知数中的两个平衡方程组。因此,可以仅基于平衡方程并且独立于膜本身的形状来获得弹性解。对于没有外周刚度(绳索)的一维元素,也不能肯定这一点。一般来说,弹性圆顶的静态问题由两个参数决定,假设约束反应与圆顶边缘的子午线相切:圆顶的浅度比和厚度。另一方面,当圆顶厚度趋于零时,与圆顶的浅度比或形状无关,出现并占据主导地位。当厚度有限时,证明存在最佳形状,与薄膜相比,该形状使弯曲状态最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Funicularity in elastic domes: Coupled effects of shape and thickness
Abstract An historical overview is presented concerning the theory of shell structures and thin domes. Early conjectures proposed, among others, by French, German, and Russian Authors are discussed. Static and kinematic matrix operator equations are formulated explicitly in the case of shells of revolution and thin domes. It is realized how the static and kinematic matrix operators are one the ad-joint of the other, and, on the other hand, it can be rigorously demonstrated through the definition of stiffness matrix and the application of virtual work principle. In this context, any possible omission present in the previous approaches becomes evident. As regards thin shells of revolution (thin domes), the elastic problem results to be internally statically-determinate, in analogy to the case of curved beams, being characterized by a system of two equilibrium equations in two unknowns. Thus, the elastic solution can be obtained just based on the equilibrium equations and independently of the shape of the membrane itself. The same cannot be affirmed for the unidimensional elements without ‚exural stiffness (ropes). Generally speaking, the static problem of elastic domes is governed by two parameters, the constraint reactions being assumed to be tangential to meridians at the dome edges: the shallowness ratio and the thickness of the dome. On the other hand, when the dome thickness tends to zero, the funicularity emerges and prevails, independently of the shallowness ratio or the shape of the dome. When the thickness is finite, an optimal shape is demonstrated to exist, which minimizes the flexural regime if compared to the membrane one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信