不定sasaki流形的不变类光子流形的若干注释

Q2 Mathematics
S. Ssekajja
{"title":"不定sasaki流形的不变类光子流形的若干注释","authors":"S. Ssekajja","doi":"10.1108/AJMS-10-2020-0097","DOIUrl":null,"url":null,"abstract":"<jats:sec><jats:title content-type=\"abstract-subheading\">Purpose</jats:title><jats:p>The author considers an invariant lightlike submanifold <jats:italic>M</jats:italic>, whose transversal bundle <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mtext>tr</m:mtext><m:mrow><m:mo stretchy=\"true\">(</m:mo><m:mrow><m:mi>T</m:mi><m:mi>M</m:mi></m:mrow><m:mo stretchy=\"true\">)</m:mo></m:mrow></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097001.tif\" /></jats:inline-formula> is flat, in an indefinite Sasakian manifold <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mrow><m:mover accent=\"true\"><m:mi>M</m:mi><m:mo stretchy=\"true\">¯</m:mo></m:mover></m:mrow><m:mrow><m:mo stretchy=\"true\">(</m:mo><m:mi>c</m:mi><m:mo stretchy=\"true\">)</m:mo></m:mrow></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097002.tif\" /></jats:inline-formula> of constant <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mover accent=\"true\"><m:mi>φ</m:mi><m:mo stretchy=\"true\">¯</m:mo></m:mover></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097003.tif\" /></jats:inline-formula>-sectional curvature <jats:italic>c</jats:italic>. Under some geometric conditions, the author demonstrates that <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mi>c</m:mi><m:mo>=</m:mo><m:mn>1</m:mn></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097004.tif\" /></jats:inline-formula>, that is, <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mover accent=\"true\"><m:mi>M</m:mi><m:mo stretchy=\"true\">¯</m:mo></m:mover></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097005.tif\" /></jats:inline-formula> is a space of constant curvature 1. Moreover, <jats:italic>M</jats:italic> and any leaf <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:msup><m:mstyle displaystyle=\"true\"><m:mi>M</m:mi></m:mstyle><m:mo>′</m:mo></m:msup></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097006.tif\" /></jats:inline-formula> of its screen distribution <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mi>S</m:mi><m:mrow><m:mo stretchy=\"true\">(</m:mo><m:mrow><m:mi>T</m:mi><m:mi>M</m:mi></m:mrow><m:mo stretchy=\"true\">)</m:mo></m:mrow></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-10-2020-0097007.tif\" /></jats:inline-formula> are, also, spaces of constant curvature 1.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Design/methodology/approach</jats:title><jats:p>The author has employed the techniques developed by K. L. Duggal and A. Bejancu of reference number 7.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Findings</jats:title><jats:p>The author has discovered that any totally umbilic invariant ligtlike submanifold, whose transversal bundle is flat, in an indefinite Sasakian space form is, in fact, a space of constant curvature 1 (see Theorem 4.4).</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Originality/value</jats:title><jats:p>To the best of the author’s findings, at the time of submission of this paper, the results reported are new and interesting as far as lightlike geometry is concerned.</jats:p></jats:sec>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on invariant lightlike submanifolds of indefinite Sasakian manifold\",\"authors\":\"S. Ssekajja\",\"doi\":\"10.1108/AJMS-10-2020-0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Purpose</jats:title><jats:p>The author considers an invariant lightlike submanifold <jats:italic>M</jats:italic>, whose transversal bundle <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mtext>tr</m:mtext><m:mrow><m:mo stretchy=\\\"true\\\">(</m:mo><m:mrow><m:mi>T</m:mi><m:mi>M</m:mi></m:mrow><m:mo stretchy=\\\"true\\\">)</m:mo></m:mrow></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097001.tif\\\" /></jats:inline-formula> is flat, in an indefinite Sasakian manifold <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mrow><m:mover accent=\\\"true\\\"><m:mi>M</m:mi><m:mo stretchy=\\\"true\\\">¯</m:mo></m:mover></m:mrow><m:mrow><m:mo stretchy=\\\"true\\\">(</m:mo><m:mi>c</m:mi><m:mo stretchy=\\\"true\\\">)</m:mo></m:mrow></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097002.tif\\\" /></jats:inline-formula> of constant <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mover accent=\\\"true\\\"><m:mi>φ</m:mi><m:mo stretchy=\\\"true\\\">¯</m:mo></m:mover></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097003.tif\\\" /></jats:inline-formula>-sectional curvature <jats:italic>c</jats:italic>. Under some geometric conditions, the author demonstrates that <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mi>c</m:mi><m:mo>=</m:mo><m:mn>1</m:mn></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097004.tif\\\" /></jats:inline-formula>, that is, <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mover accent=\\\"true\\\"><m:mi>M</m:mi><m:mo stretchy=\\\"true\\\">¯</m:mo></m:mover></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097005.tif\\\" /></jats:inline-formula> is a space of constant curvature 1. Moreover, <jats:italic>M</jats:italic> and any leaf <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:msup><m:mstyle displaystyle=\\\"true\\\"><m:mi>M</m:mi></m:mstyle><m:mo>′</m:mo></m:msup></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097006.tif\\\" /></jats:inline-formula> of its screen distribution <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mi>S</m:mi><m:mrow><m:mo stretchy=\\\"true\\\">(</m:mo><m:mrow><m:mi>T</m:mi><m:mi>M</m:mi></m:mrow><m:mo stretchy=\\\"true\\\">)</m:mo></m:mrow></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-10-2020-0097007.tif\\\" /></jats:inline-formula> are, also, spaces of constant curvature 1.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Design/methodology/approach</jats:title><jats:p>The author has employed the techniques developed by K. L. Duggal and A. Bejancu of reference number 7.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Findings</jats:title><jats:p>The author has discovered that any totally umbilic invariant ligtlike submanifold, whose transversal bundle is flat, in an indefinite Sasakian space form is, in fact, a space of constant curvature 1 (see Theorem 4.4).</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Originality/value</jats:title><jats:p>To the best of the author’s findings, at the time of submission of this paper, the results reported are new and interesting as far as lightlike geometry is concerned.</jats:p></jats:sec>\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/AJMS-10-2020-0097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/AJMS-10-2020-0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的在具有常φ-截面曲率c的不定Sasakian流形M’(c)中,考虑一个不变的类光子流形M,其横丛tr(TM)是平坦的。在某些几何条件下,作者证明了c=1,即M’是一个具有常曲率1的空间。此外,M及其屏蔽分布S(TM)的任何叶M′也是常曲率空间。1.设计/方法/方法作者采用了参考号7的K.L.Duggal和A.Bejancu开发的技术,事实上,一个常曲率空间1(见定理4.4)。原创性/价值就作者的发现而言,在提交本文时,就类光几何而言,所报道的结果是新的和有趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some remarks on invariant lightlike submanifolds of indefinite Sasakian manifold
PurposeThe author considers an invariant lightlike submanifold M, whose transversal bundle tr(TM) is flat, in an indefinite Sasakian manifold M¯(c) of constant φ¯-sectional curvature c. Under some geometric conditions, the author demonstrates that c=1, that is, M¯ is a space of constant curvature 1. Moreover, M and any leaf M of its screen distribution S(TM) are, also, spaces of constant curvature 1.Design/methodology/approachThe author has employed the techniques developed by K. L. Duggal and A. Bejancu of reference number 7.FindingsThe author has discovered that any totally umbilic invariant ligtlike submanifold, whose transversal bundle is flat, in an indefinite Sasakian space form is, in fact, a space of constant curvature 1 (see Theorem 4.4).Originality/valueTo the best of the author’s findings, at the time of submission of this paper, the results reported are new and interesting as far as lightlike geometry is concerned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信