{"title":"$j$-乘法的渐近性态","authors":"T. H. Freitas, V. H. Pérez, P. Lima","doi":"10.7146/math.scand.a-126029","DOIUrl":null,"url":null,"abstract":"Let $R= \\oplus_{n\\in \\mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\\mathfrak{m}_0)$. Let $R_+= \\oplus_{n\\in \\mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\\oplus_{n\\in \\mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\\dim(R_0)\\leq 2$ and $\\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\\ll0$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of $j$-multiplicities\",\"authors\":\"T. H. Freitas, V. H. Pérez, P. Lima\",\"doi\":\"10.7146/math.scand.a-126029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R= \\\\oplus_{n\\\\in \\\\mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\\\\mathfrak{m}_0)$. Let $R_+= \\\\oplus_{n\\\\in \\\\mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\\\\oplus_{n\\\\in \\\\mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\\\\dim(R_0)\\\\leq 2$ and $\\\\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\\\\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\\\\ll0$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-126029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $R= \oplus_{n\in \mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\mathfrak{m}_0)$. Let $R_+= \oplus_{n\in \mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\oplus_{n\in \mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\dim(R_0)\leq 2$ and $\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\ll0$.