M. Catela, D. Liang, C. Vistas, H. Costa, D. Garcia, B. Tibúrcio, J. Almeida
{"title":"跟踪误差条件下多光束同时稳定运行的太阳激光抽运方法","authors":"M. Catela, D. Liang, C. Vistas, H. Costa, D. Garcia, B. Tibúrcio, J. Almeida","doi":"10.1117/1.JPE.13.028001","DOIUrl":null,"url":null,"abstract":"Abstract. A solar laser pumping approach to achieve both simultaneous and stable multibeam solar laser operation under solar tracking error condition is proposed here. By using a heliostat, solar radiation is firstly redirected to a parabolic mirror, secondarily concentrated by an aspheric lens, and finally absorbed by four Nd:YAG rods within a pump cavity using a homogenizer. Zemax® and LASCAD™ analysis demonstrate that four simultaneous and stable 1064-nm continuous-wave solar laser emissions with similar multimode power levels can be achieved even with azimuthal solar tracking errors up to ± 0.5 deg. The variation on the multimode solar laser power of the four rods is significantly reduced from 32.38% and 55.52% without the homogenizer to 0.00% and 0.21% with the homogenizer for ± 0.1 deg and ± 0.2 deg azimuthal solar tracking error, respectively. More importantly, simultaneous and stable TEM00 mode solar laser emissions from the four rods are also numerically attained under solar tracking error condition.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"13 1","pages":"028001 - 028001"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solar laser pumping approach for both simultaneous and stable multibeam operation under tracking error condition\",\"authors\":\"M. Catela, D. Liang, C. Vistas, H. Costa, D. Garcia, B. Tibúrcio, J. Almeida\",\"doi\":\"10.1117/1.JPE.13.028001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. A solar laser pumping approach to achieve both simultaneous and stable multibeam solar laser operation under solar tracking error condition is proposed here. By using a heliostat, solar radiation is firstly redirected to a parabolic mirror, secondarily concentrated by an aspheric lens, and finally absorbed by four Nd:YAG rods within a pump cavity using a homogenizer. Zemax® and LASCAD™ analysis demonstrate that four simultaneous and stable 1064-nm continuous-wave solar laser emissions with similar multimode power levels can be achieved even with azimuthal solar tracking errors up to ± 0.5 deg. The variation on the multimode solar laser power of the four rods is significantly reduced from 32.38% and 55.52% without the homogenizer to 0.00% and 0.21% with the homogenizer for ± 0.1 deg and ± 0.2 deg azimuthal solar tracking error, respectively. More importantly, simultaneous and stable TEM00 mode solar laser emissions from the four rods are also numerically attained under solar tracking error condition.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"13 1\",\"pages\":\"028001 - 028001\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.13.028001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.13.028001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Solar laser pumping approach for both simultaneous and stable multibeam operation under tracking error condition
Abstract. A solar laser pumping approach to achieve both simultaneous and stable multibeam solar laser operation under solar tracking error condition is proposed here. By using a heliostat, solar radiation is firstly redirected to a parabolic mirror, secondarily concentrated by an aspheric lens, and finally absorbed by four Nd:YAG rods within a pump cavity using a homogenizer. Zemax® and LASCAD™ analysis demonstrate that four simultaneous and stable 1064-nm continuous-wave solar laser emissions with similar multimode power levels can be achieved even with azimuthal solar tracking errors up to ± 0.5 deg. The variation on the multimode solar laser power of the four rods is significantly reduced from 32.38% and 55.52% without the homogenizer to 0.00% and 0.21% with the homogenizer for ± 0.1 deg and ± 0.2 deg azimuthal solar tracking error, respectively. More importantly, simultaneous and stable TEM00 mode solar laser emissions from the four rods are also numerically attained under solar tracking error condition.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.