{"title":"基于熵估计的合成孔径雷达图像群目标人工神经网络分类技术","authors":"A. V. Kvasnov, V. Shkodyrev","doi":"10.5194/JSSS-10-127-2021","DOIUrl":null,"url":null,"abstract":"Abstract. The article discusses the method for the classification of non-moving group objects for information received from unmanned aerial vehicles (UAVs) by synthetic aperture radar (SAR). A theoretical approach to analysis of group objects can be estimated by cross-entropy using a naive Bayesian classifier. The entropy of target spots on SAR images revaluates depending on the altitude and aspect angle of a UAV. The paper shows that classification of the target for three classes able to predict with fair accuracy P = 0,964 based on an artificial neural network. The study of results reveals an advantage compared with other radar recognition methods for a criterion of the constant false-alarm rate (PCFAR < 0.01). The reliability was confirmed by checking the initial data using principal component analysis.\n","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A classification technique of group objects by artificial neural networks using estimation of entropy on synthetic aperture radar images\",\"authors\":\"A. V. Kvasnov, V. Shkodyrev\",\"doi\":\"10.5194/JSSS-10-127-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The article discusses the method for the classification of non-moving group objects for information received from unmanned aerial vehicles (UAVs) by synthetic aperture radar (SAR). A theoretical approach to analysis of group objects can be estimated by cross-entropy using a naive Bayesian classifier. The entropy of target spots on SAR images revaluates depending on the altitude and aspect angle of a UAV. The paper shows that classification of the target for three classes able to predict with fair accuracy P = 0,964 based on an artificial neural network. The study of results reveals an advantage compared with other radar recognition methods for a criterion of the constant false-alarm rate (PCFAR < 0.01). The reliability was confirmed by checking the initial data using principal component analysis.\\n\",\"PeriodicalId\":17167,\"journal\":{\"name\":\"Journal of Sensors and Sensor Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/JSSS-10-127-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/JSSS-10-127-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A classification technique of group objects by artificial neural networks using estimation of entropy on synthetic aperture radar images
Abstract. The article discusses the method for the classification of non-moving group objects for information received from unmanned aerial vehicles (UAVs) by synthetic aperture radar (SAR). A theoretical approach to analysis of group objects can be estimated by cross-entropy using a naive Bayesian classifier. The entropy of target spots on SAR images revaluates depending on the altitude and aspect angle of a UAV. The paper shows that classification of the target for three classes able to predict with fair accuracy P = 0,964 based on an artificial neural network. The study of results reveals an advantage compared with other radar recognition methods for a criterion of the constant false-alarm rate (PCFAR < 0.01). The reliability was confirmed by checking the initial data using principal component analysis.
期刊介绍:
Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.