具有较低正则性和权重的Sobolev空间中数据的零型波动方程的全局存在性

IF 0.6 4区 数学 Q3 MATHEMATICS
K. Hidano, K. Yokoyama
{"title":"具有较低正则性和权重的Sobolev空间中数据的零型波动方程的全局存在性","authors":"K. Hidano, K. Yokoyama","doi":"10.14492/hokmj/2021-523","DOIUrl":null,"url":null,"abstract":"Assuming initial data have small weighted $H^4\\times H^3$ norm, we prove global existence of solutions to the Cauchy problem for systems of quasi-linear wave equations in three space dimensions satisfying the null condition of Klainerman. Compared with the work of Christodoulou, our result assumes smallness of data with respect to $H^4\\times H^3$ norm having a lower weight. Our proof uses the space-time $L^2$ estimate due to Alinhac for some special derivatives of solutions to variable-coefficient wave equations. It also uses the conformal energy estimate for inhomogeneous wave equation $\\Box u=F$. A new observation made in this paper is that, in comparison with the proofs of Klainerman and Hormander, we can limit the number of occurrences of the generators of hyperbolic rotations or dilations in the course of a priori estimates of solutions. This limitation allows us to obtain global solutions for radially symmetric data, when a certain norm with considerably low weight is small enough.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence for null-form wave equations with data in a Sobolev space of lower regularity and weight\",\"authors\":\"K. Hidano, K. Yokoyama\",\"doi\":\"10.14492/hokmj/2021-523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming initial data have small weighted $H^4\\\\times H^3$ norm, we prove global existence of solutions to the Cauchy problem for systems of quasi-linear wave equations in three space dimensions satisfying the null condition of Klainerman. Compared with the work of Christodoulou, our result assumes smallness of data with respect to $H^4\\\\times H^3$ norm having a lower weight. Our proof uses the space-time $L^2$ estimate due to Alinhac for some special derivatives of solutions to variable-coefficient wave equations. It also uses the conformal energy estimate for inhomogeneous wave equation $\\\\Box u=F$. A new observation made in this paper is that, in comparison with the proofs of Klainerman and Hormander, we can limit the number of occurrences of the generators of hyperbolic rotations or dilations in the course of a priori estimates of solutions. This limitation allows us to obtain global solutions for radially symmetric data, when a certain norm with considerably low weight is small enough.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2021-523\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2021-523","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设初始数据具有小的加权$H^4\xH^3$范数,我们证明了满足Klainerman零条件的三维拟线性波动方程组Cauchy问题解的全局存在性。与Christodoulou的工作相比,我们的结果假设关于具有较低权重的$H^4\times H^3$范数的数据较小。我们的证明使用了Alinhac对变系数波动方程解的一些特殊导数的时空$L^2$估计。它还使用了非均匀波动方程$\Box u=F$的保角能量估计。本文提出的一个新的观察结果是,与Klainerman和Hormander的证明相比,我们可以限制双曲旋转或扩张的生成元在解的先验估计过程中的出现次数。当具有相当低权重的某个范数足够小时,这种限制使我们能够获得径向对称数据的全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence for null-form wave equations with data in a Sobolev space of lower regularity and weight
Assuming initial data have small weighted $H^4\times H^3$ norm, we prove global existence of solutions to the Cauchy problem for systems of quasi-linear wave equations in three space dimensions satisfying the null condition of Klainerman. Compared with the work of Christodoulou, our result assumes smallness of data with respect to $H^4\times H^3$ norm having a lower weight. Our proof uses the space-time $L^2$ estimate due to Alinhac for some special derivatives of solutions to variable-coefficient wave equations. It also uses the conformal energy estimate for inhomogeneous wave equation $\Box u=F$. A new observation made in this paper is that, in comparison with the proofs of Klainerman and Hormander, we can limit the number of occurrences of the generators of hyperbolic rotations or dilations in the course of a priori estimates of solutions. This limitation allows us to obtain global solutions for radially symmetric data, when a certain norm with considerably low weight is small enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信