{"title":"基于平面Legendre变换的3次叶形的分类","authors":"Samir Bedrouni, D. Marín","doi":"10.5802/aif.3431","DOIUrl":null,"url":null,"abstract":"— The set F(3) of foliations of degree three on the complex projective plane can be identified with a Zariski’s open set of a projective space of dimension 23 on which acts Aut(PC). The subset FP(3) of F(3) consisting of foliations of F(3) with a flat Legendre transform (dual web) is a Zariski closed subset of F(3). We classify up to automorphism of PC the elements of FP(3). More precisely, we show that up to an automorphism there are 16 foliations of degree three with a flat Legendre transform. From this classification we deduce that FP(3) has exactly 12 irreducible components. We also deduce that up to an automorphism there are 4 convex foliations of degree three on P2. Résumé. — L’ensemble F(3) des feuilletages de degré trois du plan projectif complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimension 23 sur lequel agit le groupe Aut(PC). Le sous-ensemble FP(3) de F(3) formé des feuilletages de F(3) ayant une transformée de Legendre (tissu dual) plate est un fermé de Zariski de F(3). Nous classifions à automorphisme de PC près les éléments de F(3); plus précisément, nous montrons qu’à automorphisme près il y a 16 feuilletages de degré 3 ayant une transformée de Legendre plate. De cette classification nous obtenons la décomposition de F(3) en ses composantes irréductibles. Nous en déduisons aussi la classification à automorphisme près des feuilletages convexes de degré 3 de PC.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of foliations of degree three on ℙ ℂ 2 with a flat Legendre transform\",\"authors\":\"Samir Bedrouni, D. Marín\",\"doi\":\"10.5802/aif.3431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— The set F(3) of foliations of degree three on the complex projective plane can be identified with a Zariski’s open set of a projective space of dimension 23 on which acts Aut(PC). The subset FP(3) of F(3) consisting of foliations of F(3) with a flat Legendre transform (dual web) is a Zariski closed subset of F(3). We classify up to automorphism of PC the elements of FP(3). More precisely, we show that up to an automorphism there are 16 foliations of degree three with a flat Legendre transform. From this classification we deduce that FP(3) has exactly 12 irreducible components. We also deduce that up to an automorphism there are 4 convex foliations of degree three on P2. Résumé. — L’ensemble F(3) des feuilletages de degré trois du plan projectif complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimension 23 sur lequel agit le groupe Aut(PC). Le sous-ensemble FP(3) de F(3) formé des feuilletages de F(3) ayant une transformée de Legendre (tissu dual) plate est un fermé de Zariski de F(3). Nous classifions à automorphisme de PC près les éléments de F(3); plus précisément, nous montrons qu’à automorphisme près il y a 16 feuilletages de degré 3 ayant une transformée de Legendre plate. De cette classification nous obtenons la décomposition de F(3) en ses composantes irréductibles. Nous en déduisons aussi la classification à automorphisme près des feuilletages convexes de degré 3 de PC.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of foliations of degree three on ℙ ℂ 2 with a flat Legendre transform
— The set F(3) of foliations of degree three on the complex projective plane can be identified with a Zariski’s open set of a projective space of dimension 23 on which acts Aut(PC). The subset FP(3) of F(3) consisting of foliations of F(3) with a flat Legendre transform (dual web) is a Zariski closed subset of F(3). We classify up to automorphism of PC the elements of FP(3). More precisely, we show that up to an automorphism there are 16 foliations of degree three with a flat Legendre transform. From this classification we deduce that FP(3) has exactly 12 irreducible components. We also deduce that up to an automorphism there are 4 convex foliations of degree three on P2. Résumé. — L’ensemble F(3) des feuilletages de degré trois du plan projectif complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimension 23 sur lequel agit le groupe Aut(PC). Le sous-ensemble FP(3) de F(3) formé des feuilletages de F(3) ayant une transformée de Legendre (tissu dual) plate est un fermé de Zariski de F(3). Nous classifions à automorphisme de PC près les éléments de F(3); plus précisément, nous montrons qu’à automorphisme près il y a 16 feuilletages de degré 3 ayant une transformée de Legendre plate. De cette classification nous obtenons la décomposition de F(3) en ses composantes irréductibles. Nous en déduisons aussi la classification à automorphisme près des feuilletages convexes de degré 3 de PC.