{"title":"对夫妇家庭养家糊口模式的稳定性和变化的潜在阶级分析","authors":"F. Pennoni, M. Nakai","doi":"10.1515/demo-2019-0012","DOIUrl":null,"url":null,"abstract":"Abstract A latent class model is proposed to examine couples’ breadwinning typologies and explain the wage differentials according to the socio-demographic characteristics of the society with data collected through surveys. We derive an ordinal variable indicating the couple’s income provision-role type and suppose the existence of an underlying discrete latent variable to model the effect of covariates. We use a two-step maximum likelihood inference conducted to account for concomitant variables, informative sampling scheme and missing responses. The weighted log-likelihood is maximised through the Expectation-Maximization algorithm and information criteria are used to develop the model selection. Predictions are made on the basis of the maximum posterior probabilities. Disposing of data collected in Japan over thirty years we compare couples’ breadwinning patterns across time. We provide some evidence of the gender wage-gap and we show that it can be attributed to the fact that, especially in Japan, duties and responsibilities for the child care are supported exclusively by women.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"234 - 246"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0012","citationCount":"4","resultStr":"{\"title\":\"A latent class analysis towards stability and changes in breadwinning patterns among coupled households\",\"authors\":\"F. Pennoni, M. Nakai\",\"doi\":\"10.1515/demo-2019-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A latent class model is proposed to examine couples’ breadwinning typologies and explain the wage differentials according to the socio-demographic characteristics of the society with data collected through surveys. We derive an ordinal variable indicating the couple’s income provision-role type and suppose the existence of an underlying discrete latent variable to model the effect of covariates. We use a two-step maximum likelihood inference conducted to account for concomitant variables, informative sampling scheme and missing responses. The weighted log-likelihood is maximised through the Expectation-Maximization algorithm and information criteria are used to develop the model selection. Predictions are made on the basis of the maximum posterior probabilities. Disposing of data collected in Japan over thirty years we compare couples’ breadwinning patterns across time. We provide some evidence of the gender wage-gap and we show that it can be attributed to the fact that, especially in Japan, duties and responsibilities for the child care are supported exclusively by women.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"234 - 246\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0012\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A latent class analysis towards stability and changes in breadwinning patterns among coupled households
Abstract A latent class model is proposed to examine couples’ breadwinning typologies and explain the wage differentials according to the socio-demographic characteristics of the society with data collected through surveys. We derive an ordinal variable indicating the couple’s income provision-role type and suppose the existence of an underlying discrete latent variable to model the effect of covariates. We use a two-step maximum likelihood inference conducted to account for concomitant variables, informative sampling scheme and missing responses. The weighted log-likelihood is maximised through the Expectation-Maximization algorithm and information criteria are used to develop the model selection. Predictions are made on the basis of the maximum posterior probabilities. Disposing of data collected in Japan over thirty years we compare couples’ breadwinning patterns across time. We provide some evidence of the gender wage-gap and we show that it can be attributed to the fact that, especially in Japan, duties and responsibilities for the child care are supported exclusively by women.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations