将纯组分性质与MOSCED溶解度参数相关联:蒸发焓和蒸气压

IF 2.8 Q2 ENGINEERING, CHEMICAL
Nick H. Wong, Pratik Dhakal, Sydnee N. Roese, Andrew S. Paluch
{"title":"将纯组分性质与MOSCED溶解度参数相关联:蒸发焓和蒸气压","authors":"Nick H. Wong, Pratik Dhakal, Sydnee N. Roese, Andrew S. Paluch","doi":"10.3390/chemengineering7020025","DOIUrl":null,"url":null,"abstract":"Tools to predict vapor–liquid phase equilibria are indispensable for the conceptualization and design of separation processes. Modified separation of cohesive energy density (MOSCED) is a solubility-parameter-based method parameterized to make accurate predictions of the limiting activity coefficient. As a solubility-parameter-based method, MOSCED can not only make quantitative predictions, but can shed light on the underlying intermolecular interactions. In the present study, we demonstrated the ability of MOSCED to correlate the enthalpy of vaporization and vapor pressure at a specific temperature using multiple linear regression. With this addition, MOSCED is able to predict vapor–liquid phase equilibria in the absence of reference data. This was demonstrated for the prediction of the Henry’s constant and solvation free energy of organic solutes in water, which was found to be superior to mod-UNIFAC. In addition to being able to make phase equilibrium predictions, the ability to correlate the enthalpy of vaporization and vapor pressure offers the opportunity to include additional properties in the regression of the MOSCED parameters. Given this success, we additionally attempted to correlate a wide range of physical properties using a similar expression. While, in some cases, the results were reasonable, they were inferior to the correlations of the enthalpy of vaporization and vapor pressure. Future efforts will be needed to improve the correlations.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlating Pure Component Properties with MOSCED Solubility Parameters: Enthalpy of Vaporization and Vapor Pressure\",\"authors\":\"Nick H. Wong, Pratik Dhakal, Sydnee N. Roese, Andrew S. Paluch\",\"doi\":\"10.3390/chemengineering7020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tools to predict vapor–liquid phase equilibria are indispensable for the conceptualization and design of separation processes. Modified separation of cohesive energy density (MOSCED) is a solubility-parameter-based method parameterized to make accurate predictions of the limiting activity coefficient. As a solubility-parameter-based method, MOSCED can not only make quantitative predictions, but can shed light on the underlying intermolecular interactions. In the present study, we demonstrated the ability of MOSCED to correlate the enthalpy of vaporization and vapor pressure at a specific temperature using multiple linear regression. With this addition, MOSCED is able to predict vapor–liquid phase equilibria in the absence of reference data. This was demonstrated for the prediction of the Henry’s constant and solvation free energy of organic solutes in water, which was found to be superior to mod-UNIFAC. In addition to being able to make phase equilibrium predictions, the ability to correlate the enthalpy of vaporization and vapor pressure offers the opportunity to include additional properties in the regression of the MOSCED parameters. Given this success, we additionally attempted to correlate a wide range of physical properties using a similar expression. While, in some cases, the results were reasonable, they were inferior to the correlations of the enthalpy of vaporization and vapor pressure. Future efforts will be needed to improve the correlations.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7020025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

预测汽液相平衡的工具对于分离过程的概念化和设计是必不可少的。改进的内聚能密度分离(MOSCED)是一种基于溶解度参数的方法,通过参数化可以准确预测极限活度系数。作为一种基于溶解度参数的方法,MOSCED不仅可以进行定量预测,还可以揭示潜在的分子间相互作用。在本研究中,我们使用多元线性回归证明了MOSCED在特定温度下关联蒸发焓和蒸汽压的能力。通过这一添加,MOSCED能够在没有参考数据的情况下预测汽液相平衡。这被证明用于预测水中有机溶质的亨利常数和溶剂化自由能,发现其优于mod UNIFAC。除了能够进行相平衡预测外,将蒸发焓和蒸汽压相关联的能力还提供了在MOSCED参数的回归中包括额外特性的机会。鉴于这一成功,我们还尝试使用类似的表达式来关联广泛的物理特性。虽然在某些情况下,结果是合理的,但它们不如蒸发焓和蒸汽压的相关性。未来需要努力改善这种相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlating Pure Component Properties with MOSCED Solubility Parameters: Enthalpy of Vaporization and Vapor Pressure
Tools to predict vapor–liquid phase equilibria are indispensable for the conceptualization and design of separation processes. Modified separation of cohesive energy density (MOSCED) is a solubility-parameter-based method parameterized to make accurate predictions of the limiting activity coefficient. As a solubility-parameter-based method, MOSCED can not only make quantitative predictions, but can shed light on the underlying intermolecular interactions. In the present study, we demonstrated the ability of MOSCED to correlate the enthalpy of vaporization and vapor pressure at a specific temperature using multiple linear regression. With this addition, MOSCED is able to predict vapor–liquid phase equilibria in the absence of reference data. This was demonstrated for the prediction of the Henry’s constant and solvation free energy of organic solutes in water, which was found to be superior to mod-UNIFAC. In addition to being able to make phase equilibrium predictions, the ability to correlate the enthalpy of vaporization and vapor pressure offers the opportunity to include additional properties in the regression of the MOSCED parameters. Given this success, we additionally attempted to correlate a wide range of physical properties using a similar expression. While, in some cases, the results were reasonable, they were inferior to the correlations of the enthalpy of vaporization and vapor pressure. Future efforts will be needed to improve the correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信