具有粗糙数据的弱调和映射的Dirichlet问题

IF 2.1 2区 数学 Q1 MATHEMATICS
Gael Diebou Yomgne, H. Koch
{"title":"具有粗糙数据的弱调和映射的Dirichlet问题","authors":"Gael Diebou Yomgne, H. Koch","doi":"10.1080/03605302.2022.2056705","DOIUrl":null,"url":null,"abstract":"Abstract Weakly harmonic maps from a domain (the upper half-space or a bounded domain, ) into a smooth closed manifold are studied. Prescribing small Dirichlet data in either of the classes or we establish solvability of the resulting boundary value problems by means of a nonvariational method. As a by-product, solutions are shown to be locally smooth, Moreover, we show that boundary data can be chosen large in the underlying topologies if Ω is smooth and bounded by perturbing strictly stable smooth harmonic maps.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dirichlet problem for weakly harmonic maps with rough data\",\"authors\":\"Gael Diebou Yomgne, H. Koch\",\"doi\":\"10.1080/03605302.2022.2056705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Weakly harmonic maps from a domain (the upper half-space or a bounded domain, ) into a smooth closed manifold are studied. Prescribing small Dirichlet data in either of the classes or we establish solvability of the resulting boundary value problems by means of a nonvariational method. As a by-product, solutions are shown to be locally smooth, Moreover, we show that boundary data can be chosen large in the underlying topologies if Ω is smooth and bounded by perturbing strictly stable smooth harmonic maps.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2056705\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2056705","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要研究了从域(上半空间或有界域)到光滑闭流形的弱调和映射。在任一类中规定小的狄利克雷数据,或者我们通过非变分方法建立所得边值问题的可解性。作为副产品,解被证明是局部光滑的。此外,我们证明了如果Ω是光滑的,并且通过扰动严格稳定的光滑调和映射来定界,则边界数据可以在底层拓扑中被选择得很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirichlet problem for weakly harmonic maps with rough data
Abstract Weakly harmonic maps from a domain (the upper half-space or a bounded domain, ) into a smooth closed manifold are studied. Prescribing small Dirichlet data in either of the classes or we establish solvability of the resulting boundary value problems by means of a nonvariational method. As a by-product, solutions are shown to be locally smooth, Moreover, we show that boundary data can be chosen large in the underlying topologies if Ω is smooth and bounded by perturbing strictly stable smooth harmonic maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信