{"title":"预测性隐私:人工智能和大数据背景下的集体数据保护","authors":"Rainer Mühlhoff","doi":"10.1177/20539517231166886","DOIUrl":null,"url":null,"abstract":"Big data and artificial intelligence pose a new challenge for data protection as these techniques allow predictions to be made about third parties based on the anonymous data of many people. Examples of predicted information include purchasing power, gender, age, health, sexual orientation, ethnicity, etc. The basis for such applications of “predictive analytics” is the comparison between behavioral data (e.g. usage, tracking, or activity data) of the individual in question and the potentially anonymously processed data of many others using machine learning models or simpler statistical methods. The article starts by noting that predictive analytics has a significant potential to be abused, which manifests itself in the form of social inequality, discrimination, and exclusion. These potentials are not regulated by current data protection law in the EU; indeed, the use of anonymized mass data takes place in a largely unregulated space. Under the term “predictive privacy,” a data protection approach is presented that counters the risks of abuse of predictive analytics. A person's predictive privacy is violated when personal information about them is predicted without their knowledge and against their will based on the data of many other people. Predictive privacy is then formulated as a protected good and improvements to data protection with regard to the regulation of predictive analytics are proposed. Finally, the article points out that the goal of data protection in the context of predictive analytics is the regulation of “prediction power,” which is a new manifestation of informational power asymmetry between platform companies and society.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predictive privacy: Collective data protection in the context of artificial intelligence and big data\",\"authors\":\"Rainer Mühlhoff\",\"doi\":\"10.1177/20539517231166886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data and artificial intelligence pose a new challenge for data protection as these techniques allow predictions to be made about third parties based on the anonymous data of many people. Examples of predicted information include purchasing power, gender, age, health, sexual orientation, ethnicity, etc. The basis for such applications of “predictive analytics” is the comparison between behavioral data (e.g. usage, tracking, or activity data) of the individual in question and the potentially anonymously processed data of many others using machine learning models or simpler statistical methods. The article starts by noting that predictive analytics has a significant potential to be abused, which manifests itself in the form of social inequality, discrimination, and exclusion. These potentials are not regulated by current data protection law in the EU; indeed, the use of anonymized mass data takes place in a largely unregulated space. Under the term “predictive privacy,” a data protection approach is presented that counters the risks of abuse of predictive analytics. A person's predictive privacy is violated when personal information about them is predicted without their knowledge and against their will based on the data of many other people. Predictive privacy is then formulated as a protected good and improvements to data protection with regard to the regulation of predictive analytics are proposed. Finally, the article points out that the goal of data protection in the context of predictive analytics is the regulation of “prediction power,” which is a new manifestation of informational power asymmetry between platform companies and society.\",\"PeriodicalId\":47834,\"journal\":{\"name\":\"Big Data & Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data & Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/20539517231166886\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231166886","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Predictive privacy: Collective data protection in the context of artificial intelligence and big data
Big data and artificial intelligence pose a new challenge for data protection as these techniques allow predictions to be made about third parties based on the anonymous data of many people. Examples of predicted information include purchasing power, gender, age, health, sexual orientation, ethnicity, etc. The basis for such applications of “predictive analytics” is the comparison between behavioral data (e.g. usage, tracking, or activity data) of the individual in question and the potentially anonymously processed data of many others using machine learning models or simpler statistical methods. The article starts by noting that predictive analytics has a significant potential to be abused, which manifests itself in the form of social inequality, discrimination, and exclusion. These potentials are not regulated by current data protection law in the EU; indeed, the use of anonymized mass data takes place in a largely unregulated space. Under the term “predictive privacy,” a data protection approach is presented that counters the risks of abuse of predictive analytics. A person's predictive privacy is violated when personal information about them is predicted without their knowledge and against their will based on the data of many other people. Predictive privacy is then formulated as a protected good and improvements to data protection with regard to the regulation of predictive analytics are proposed. Finally, the article points out that the goal of data protection in the context of predictive analytics is the regulation of “prediction power,” which is a new manifestation of informational power asymmetry between platform companies and society.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.