高维临界分支随机游动的不变测度

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
V. Rapenne
{"title":"高维临界分支随机游动的不变测度","authors":"V. Rapenne","doi":"10.1214/23-ejp906","DOIUrl":null,"url":null,"abstract":"In this work, we characterize cluster-invariant point processes for critical branching spatial processes on R d for all large enough d when the motion law is α -stable or has a finite discrete range. More precisely, when the motion is α -stable with α ≤ 2 and the offspring law µ of the branching process has an heavy tail such that µ ( k ) ∼ k − 2 − β , then we need the dimension d to be strictly larger than the critical dimension α/β . In particular, when the motion is Brownian and the offspring law µ has a second moment, this critical dimension is 2. Contrary to the previous work of Bramson, Cox and Greven in [BCG97] whose proof used PDE techniques, our proof uses probabilistic tools only.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant measures of critical branching random walks in high dimension\",\"authors\":\"V. Rapenne\",\"doi\":\"10.1214/23-ejp906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we characterize cluster-invariant point processes for critical branching spatial processes on R d for all large enough d when the motion law is α -stable or has a finite discrete range. More precisely, when the motion is α -stable with α ≤ 2 and the offspring law µ of the branching process has an heavy tail such that µ ( k ) ∼ k − 2 − β , then we need the dimension d to be strictly larger than the critical dimension α/β . In particular, when the motion is Brownian and the offspring law µ has a second moment, this critical dimension is 2. Contrary to the previous work of Bramson, Cox and Greven in [BCG97] whose proof used PDE techniques, our proof uses probabilistic tools only.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp906\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp906","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,当运动定律是α-稳定的或具有有限的离散范围时,我们对所有足够大的d在R d上的临界分支空间过程的簇不变点过程进行了刻画。更准确地说,当运动是α稳定的,α≤2,并且分支过程的弹簧定律µ有一个重尾,使得µ(k)~k−2−β,那么我们需要尺寸d严格大于临界尺寸α/β。特别是,当运动是布朗运动,且弹簧定律µ有一个二阶矩时,该临界尺寸为2。与Bramson、Cox和Greven在[BCG97]中使用PDE技术进行证明的先前工作相反,我们的证明仅使用概率工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant measures of critical branching random walks in high dimension
In this work, we characterize cluster-invariant point processes for critical branching spatial processes on R d for all large enough d when the motion law is α -stable or has a finite discrete range. More precisely, when the motion is α -stable with α ≤ 2 and the offspring law µ of the branching process has an heavy tail such that µ ( k ) ∼ k − 2 − β , then we need the dimension d to be strictly larger than the critical dimension α/β . In particular, when the motion is Brownian and the offspring law µ has a second moment, this critical dimension is 2. Contrary to the previous work of Bramson, Cox and Greven in [BCG97] whose proof used PDE techniques, our proof uses probabilistic tools only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信