关于独立分量数:一种基于调整确定系数的方法

IF 0.6 Q4 STATISTICS & PROBABILITY
Saima Afzal, M. Iqbal, Ayesha Afzal
{"title":"关于独立分量数:一种基于调整确定系数的方法","authors":"Saima Afzal, M. Iqbal, Ayesha Afzal","doi":"10.1285/I20705948V14N1P13","DOIUrl":null,"url":null,"abstract":"Independent Component Analysis (ICA) is a comparatively new statisticaland computational technique to find hidden components from multivariate statistical data. The technique is also employed as a tool for dimension reduction for efficient data analysis. Reduction in dimensions can be done byassigning ranks to the independent components in some appropriate way and then restricting the data analysis to certain high ranking components only.The problem of determining the number of high ranked ICs that should be retained is the main objective of this paper. A method based upon adjusted coefficient of determination is proposed for the purpose. The performance of the proposed method is demonstrated through experimental evaluation on real-world financial time series data.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"14 1","pages":"13-26"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Number of Independent Components: An Adjusted Coefficient of Determination based Approach\",\"authors\":\"Saima Afzal, M. Iqbal, Ayesha Afzal\",\"doi\":\"10.1285/I20705948V14N1P13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Independent Component Analysis (ICA) is a comparatively new statisticaland computational technique to find hidden components from multivariate statistical data. The technique is also employed as a tool for dimension reduction for efficient data analysis. Reduction in dimensions can be done byassigning ranks to the independent components in some appropriate way and then restricting the data analysis to certain high ranking components only.The problem of determining the number of high ranked ICs that should be retained is the main objective of this paper. A method based upon adjusted coefficient of determination is proposed for the purpose. The performance of the proposed method is demonstrated through experimental evaluation on real-world financial time series data.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"14 1\",\"pages\":\"13-26\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V14N1P13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V14N1P13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

独立分量分析(ICA)是一种比较新的统计计算技术,用于从多变量统计数据中寻找隐藏分量。该技术还被用作降维工具,以进行有效的数据分析。可以通过以某种适当的方式将等级分配给独立组件,然后将数据分析仅限于某些高等级组件来实现降维。确定应保留的高级别IC的数量是本文的主要目标。为此,提出了一种基于调整决定系数的方法。通过对真实世界金融时间序列数据的实验评估,验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Number of Independent Components: An Adjusted Coefficient of Determination based Approach
Independent Component Analysis (ICA) is a comparatively new statisticaland computational technique to find hidden components from multivariate statistical data. The technique is also employed as a tool for dimension reduction for efficient data analysis. Reduction in dimensions can be done byassigning ranks to the independent components in some appropriate way and then restricting the data analysis to certain high ranking components only.The problem of determining the number of high ranked ICs that should be retained is the main objective of this paper. A method based upon adjusted coefficient of determination is proposed for the purpose. The performance of the proposed method is demonstrated through experimental evaluation on real-world financial time series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信