简并KdV和NLS模型的紧子波的稳定性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
S. Hakkaev, A. Ramadan, A. Stefanov
{"title":"简并KdV和NLS模型的紧子波的稳定性","authors":"S. Hakkaev, A. Ramadan, A. Stefanov","doi":"10.1090/qam/1616","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the degenerate semi-linear Schrödinger and Korteweg-de Vries equations in one spatial dimension. We construct special solutions of the two models, namely standing wave solutions of NLS and traveling waves, which turn out to have compact support, compactons. We show that the compactons are unique bell-shaped solutions of the corresponding PDEs and for appropriate variational problems as well. We provide a complete spectral characterization of such waves, for all values of \n\n \n p\n p\n \n\n. Namely, we show that all waves are spectrally stable for \n\n \n \n 2\n >\n p\n ≤\n 8\n \n 2>p\\leq 8\n \n\n, while a single mode instability occurs for \n\n \n \n p\n >\n 8\n \n p>8\n \n\n. This extends previous work of Germain, Harrop-Griffiths and Marzuola [Quart. Appl. Math. 78 (2020), pp. 1–32] who have previously established orbital stability for some specific waves, in the range \n\n \n \n p\n >\n 8\n \n p>8\n \n\n.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability of the compacton waves for the degenerate KdV and NLS models\",\"authors\":\"S. Hakkaev, A. Ramadan, A. Stefanov\",\"doi\":\"10.1090/qam/1616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the degenerate semi-linear Schrödinger and Korteweg-de Vries equations in one spatial dimension. We construct special solutions of the two models, namely standing wave solutions of NLS and traveling waves, which turn out to have compact support, compactons. We show that the compactons are unique bell-shaped solutions of the corresponding PDEs and for appropriate variational problems as well. We provide a complete spectral characterization of such waves, for all values of \\n\\n \\n p\\n p\\n \\n\\n. Namely, we show that all waves are spectrally stable for \\n\\n \\n \\n 2\\n >\\n p\\n ≤\\n 8\\n \\n 2>p\\\\leq 8\\n \\n\\n, while a single mode instability occurs for \\n\\n \\n \\n p\\n >\\n 8\\n \\n p>8\\n \\n\\n. This extends previous work of Germain, Harrop-Griffiths and Marzuola [Quart. Appl. Math. 78 (2020), pp. 1–32] who have previously established orbital stability for some specific waves, in the range \\n\\n \\n \\n p\\n >\\n 8\\n \\n p>8\\n \\n\\n.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1616\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1616","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一维空间中的退化半线性Schrödinger方程和Korteweg-de Vries方程。我们构造了两种模型的特殊解,即NLS驻波解和行波解,它们具有紧致的支撑和紧致。我们证明了这些紧子是相应偏微分方程和适当变分问题的唯一钟形解。对于所有的p p值,我们提供了这种波的完整的谱特征。也就是说,我们证明了所有的波在2>p≤8 2>p \leq 8时都是光谱稳定的,而在p>8 p>8时发生单模不稳定。这扩展了Germain, Harrop-Griffiths和Marzuola [Quart]之前的工作。苹果。数学,78 (2020),pp. 1-32],他们之前已经建立了一些特定波的轨道稳定性,在p bbb80 p>8范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of the compacton waves for the degenerate KdV and NLS models
In this paper, we consider the degenerate semi-linear Schrödinger and Korteweg-de Vries equations in one spatial dimension. We construct special solutions of the two models, namely standing wave solutions of NLS and traveling waves, which turn out to have compact support, compactons. We show that the compactons are unique bell-shaped solutions of the corresponding PDEs and for appropriate variational problems as well. We provide a complete spectral characterization of such waves, for all values of p p . Namely, we show that all waves are spectrally stable for 2 > p ≤ 8 2>p\leq 8 , while a single mode instability occurs for p > 8 p>8 . This extends previous work of Germain, Harrop-Griffiths and Marzuola [Quart. Appl. Math. 78 (2020), pp. 1–32] who have previously established orbital stability for some specific waves, in the range p > 8 p>8 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信